INCLUDES 12

INCREDIBLE PROJECTS
YOU CAN BUILD!

PIC

MICROCONTROLLER

4
4

JOHN IOVINE

PROJECT BOOK

A TRUE BEGINNER’S GUIDE T0 THE
POPULAR PIC MICROCONTROLLER

PIC Microcontroller
Project Book

John lovine

McGraw-Hill
Mew York San Francisco Washington, D.C. Auckland Bogota

Caracas Lisbon London Madrid Mexice City Milan
Montreal New Delhi San Juan Singapore
Sydney Tokyo Toronto

2 Chapter One

embedded in the circuit’s design. Because of their versatility, microcontrollers
add a lot of power, control, and options at little cost. It therefore becomes
essential that the electronies engineer or hobbyist learn to program these
microcontrollers to maintain a level of competence and to gain the advantages
microcontrollers provide in his or her own circuit designs.

If you examine consumer electronics, you will find microcontrollers embed-
ded in just about everything. This is another reason to become familiar with
microcontrollers.

Designer Computers

There is a large variety of microcontrollers on the market today. We will focus
on a few versatile microcontroller chips called PIC chips (or PICMicro chips)
from Microchip Technology.

The PIC Chip

Microchip Technology’s series of microcontrollers is called PIC chips. Microchip
secured a trademark for the name PIC. Microchip uses PIC to describe its
series of PIC microcontrollers. PIC is generally assumed to mean programma-
ble interface controller.

Better Than Any Stamp

Parallax Company sells an easy-to-use series of microcontroller circuits
called the Basic Stamp. Parallax’s Basic Stamps (BS1 and BS2) use
Microchip Technology's PIC microcontrollers. What makes the Stamps so
popular and easy to use is that they are programmed using a simplified
form of the Basic language. Basic-language programming is easy to learn
and use. This was the Stamps’ main advantage over other microcontroller
systems, which have a much longer learning curve because they force their
users and developers to learn a niche assembly language. (A niche assem-
bly language is one that is specific to that company’s microcontroller and
no one else’s.)

The Basic Stamp has become one of the most popular microcontrollers in use
today. Again, the Basic Stamp’s popularity (this bears repeating) is due to its
easy-to-learn and easy-to-use Basic-language programming. The PIC’s Basic-
language system is just as easy to learn and use, and the PIC has enormous
benefits that make it better than any Stamp.

The Basic language of the PICBasic compiler that we will use to program
the PIC chips is similar to that used in the Basic Stamp series. Programming
PIC chips directly has just become as easy as programming Stamps. Now you
can enjoy the same easy language the Basic Stamp offers, plus two more very
important bhenefits.

Microcontroller 3

Benefit one: faster speed

Our programmed PIC chips will run their program much faster. If we enter
the identical Basic program into a Basic Stamp and into a PIC chip, the pro-
grammed PIC chip will run 20 to 100 times faster (depending upon the
instructions used) than the Basic Stamp. Here's why.

The BS1 and BS2 Basic Stamp systems use a serial EEPROM memory con-
nected to the PIC chip to store their programs. The basic commands in the pro-
gram are stored as basic tokens. Basic tokens are like a shorthand for basic
commands. When running the program, the Basic Stamp reads each instrue-
tion (token and data/address) over the serial line from the external EEPROM
memory, interprets the token (converts token to the ML equivalent the PIC
can understand), performs the instruction, reads the next instruction, and so
on. Each and every instruction goes through these serial load, read, interpret,
then perform steps as the program runs. The serial interface reading routine
eats up gobs of the mierocontroller’s CPU time.

In contrast to this operation, when a PIC chip is programmed using the
Basic compiler, the Basic program is first converted to a PIC machine-
language (hex file) program. The ML program is then uploaded into the PIC
chip. Being the native language of the PIC, this machine-language (ML) code
does not need to be stored as tokens and interpreted as it runs because the pro-
gram is written in the PIC chip’s native language.

When the PIC chip runs the program, it reads the ML program instructions
directly from its on-board memory and performs the instruction. There is no
serial interface to an external EEPROM to eat up CPU time. The ML instrue-
tions are read in parallel, not bit by bit as in the serial interface. The ML
instructions read directly without any basic-token-to-ML-equivalent conver-
sion required. This enables programmed PIC chips to run their code 20 to 100
times faster than the same Basic program code in a Basic Stamp.

Benefit two: much lower cost

The next factor is cost. Using PIC chips directly will save you 75 percent of
the cost of a comparable Basic Stamp. The retail price for the BS1, which has
256 bytes of programmable memory, is $34.95. The retail price for the BS2,
which has 2K of programmable memory, is $49.95. The 16F84 PIC microcon-
troller featured throughout this book is more closely comparable to the BS2
Stamp. The 16F84 PIC chip we are using has 1K of programmable memory.

The retail cost of the 16F84 PIC chip is $6.95. To this, add the cost of a tim-
ing crystal, a few capacitors, a few resistors, and a 7805 voltage regulator to
make a circuit equivalent to that of the Stamp. These components increase the
total cost to about $10.00—still well below one-guarter the cost (75 percent
savings) currently quoted for the BS2.

And this $10.00 cost for the PIC may be cut substantially in some situa-
tions. The PIC 16F84 is an expensive microcontroller with rewritable (flash)

4 Chapter One

memory. If, for instance, you design a circuit (or product) for manufacture
that doesn’t need to be reprogrammed after it is initially programmed, you
can use a one-time programmable (OTP) PIC microcontroller and save about
$2.00 to $3.00 on the PIC microcontroller as compared to the cost of a PIC
microcontroller with flash (rewritable memory).

In any case, anyone who uses more than a few Stamps a yvear will find it well

worth the investment to completely serap the Basic Stamp system and jump
onto this faster and cheaper microcontroller bandwagon.

If vou are an experimenter, developer, or manufacturer or plan to become one,

the cost savings are too substantial to consider investing in any other system.

Extra bonus advantage

The footprint of the 16F84 PIC microcontroller chip embedded in another cir-
cuit is smaller than the equivalent BS2 Stamp because the Stamps use an
external serial EEPROM for memory. While the BS2 may, at first glance, look
smaller since it is contained in a 28-pin DIP package, it is not. You can also
purchase the 16F84 in surface-mount form and the resulting circuit will have
a smaller footprint.

PIC Programming Overview

Programming PIC microcontrollers is a simple three-step process. There's an
old saying that there's more than one way to skin a cat, and the same can be
said about programming PIC microcontrollers. When you look at the market,
you will discover a variety of programmers and compilers for PIC microcon-
trollers. We will not do a comparison of the products on the market. Instead,
we will focus on what we have found to be an easy-to-learn and very power-
ful Basic-language compiler and its associated programmer board.

Remember, this is an overview. Exact step-by-step instructions are given in

the next chapter, when we program a PIC with our first test program.

What to buy

You need to purchase at least three items to start programming and building
projects: the PICBasic compiler program, the EPIC programmer (a program-
ming carrier board), and the PIC chip itself. I recommend beginning with the
16F84 PIC microcontroller because it has exactly 1K x 14 of rewritable mem-
ory. This memory allows you to reuse the PIC chip many times to test and
debug your programs.

The PICBasic compiler (see Fig. 1.1) runs on a standard PC. The program may
be run in DOS or in an “MS-D0S prompt” window in the Windows environment.
From here on out, the MS-DOS prompt window will be referred to simply as a
DOS window. The DOS program will run on everything from an XT-class PC run-
ning DOS 3.3 and higher. The program supports a large variety of PIC micro-
controllers. The compiler generates ML hex code that may be used with other
programming carrier boards. The cost for PICBasic compiler software is $99.95.

Microcontroller S

- PicBasic Compiler

PicBasic

Comypler

e A LR

T e 1 o che S Tabi
T TR AL B ML s 0

Figure 1.1 PICBasic compiler program and manual.

There is a more expensive compiler called the PICBasic Pro that retails for
$249.95. Do not purchase this compiler! The PICBasic Pro handles the Peek
and Poke commands differently than the standard PICBasic Compiler. So
remember to purchase the standard PICBasic Compiler for $99.95.

The EPIC programming carrier board (see Fig. 1.2) has a socket for inserting
the PIC chip and connecting it to the computer, via the printer port, for pro-
gramming. The programming board connects to the computer’s printer port
(parallel port) using a DB25 cable. If the computer has only one printer port and
there is a printer connected to it, the printer must be temporarily disconnected
when PIC chips are being programmed. Like the PICBasic compiler, the EPIC
programming carrier board supports a wide variety of PIC microcontrollers. The
cost for the EPIC programming board with EPIC programming diskette is
$59.00. Those who wish to build their own board may purchase a bare PC board
with program diskette for $34.95.

The PIC 16F84 pinout is shown in Fig. 1.3. It is a versatile microcontroller
with flash memory. Flash memory is a term used to describe this type of

6 Chapter One

Figure 1.2 EFPIC programming earrier board and software.

rewritable memory. The on-board flash memory can endure a minimum of
1000 erase/write cycles, so you can reprogram and reuse the PIC chip at least
1000 times. The program retention time, between erase/write cycles, is
approximately 40 years. The 18-pin chip devotes 13 pins to I/O. Each pin may
be programmed individually for input or output. The pin status (I/O direction
control) may be changed on the fly via programming. Other features include
power on reset, power-saving sleep mode, power-up timer, and code protection,

Microcontroller 7

1 13
=k «—" Features
2 #7
|| Rad rRan |
v GENERAL
3 16
|| RA4/TOCKI W AosqGLKIN RISC CFU 35 single werd instructions
. n " Opcrating Speed DC-10MHZ Cloek Inpait
Py 1K Pragram Meywey
|| MELR y OScEoLKoUT | 14Bit wide Instructions
5 14 §-Blt vAde dala path
Vs Yeld Direct, indirect and relative addressing
I_ : ,, _| 10 erasalvake cyeles
13
—| | reamiT | I RE? | PERIPHERAL
T 12 L . -
— RE1 m 13 VG plnes With individual direction contro
I_ RB& _l High Current sinkfzoyres 10 divecl LED dirive
q h i - 25 mA sink max. per pin
|_ RBI RES _| - 20 A SoUrce max par pin
; TMRO; 8-hit tim erfcounter with B-bit
l_ RES REd J 10 program mable prescaler

Figure 1.3 PIC 16F84 pinout.

among others. Additional features and architecture details of the PIC 16F84
will be given as we continue.

Step 1: Writing the Basic-language program

PICBasic programs are written using a word processor. Any word processor
that is able to save its text file as ASCII or DOS text may be used. Just about
every commercial word processor available has this option. Use the Save as
command and choose MS3-DOS text, DOS text, or ASCII text. The text file you
write with the word processor will be compiled into a program. If vou don’t own
a word processor, vou can use Windows Notepad, which is included with
Windows 3.X and Windows 95/98, to write the Basic-language source file. (In
Windows, look under Accessories.) At the DOS level, you can use the Edit pro-
gram to write text files.

The compiler needs the basic program saved as a standard (MS-DOS) or
ASCII test file because any special formatting and print codes that are
unique to an individual word processor are not saved in the ASCII or DOS
file types.

When vou save the file, save it with a . bas suffix. For example, if you were
saving a program named wink, you would save it as wink.bas. Saving the file
with a .bas suffix is an option. The compiler will read the file with or without
the .bas suffix. The .bas suffix will help you identify your PIC programs in
a crowded directory.

Microcontroller 9

¢ Wb -G P - F P

Eogram erify haue

ead p:;i:] lank? rase £

Figure 1.4 Screen shot of EPIC programming software (DOS). The program loaded is wink hesx.

RadioShack PN#276-175
RadioShack PN#272-1069

(1) Solderless breadboard
(1) 0.1-pF capacitor

i(8) Red LEDs RadioShack PN#276-208

(8) 470-0) resistors® RadioShack PN#270-1115
(1) 4.7-k{) resistor RadioShack PN#271-1124
(8) 10-k() resistors RadioShack PN#271-1126
(1) 7805 voltage regulator RadioShack PN#276-1770
(2) Four-position PC-mounted switches RadioShack PN#275-1301

(1) 9-V battery clip RadioShack PN#270-325

Available at local RadioShack stores. Also available from James Electronics
and JDR Micro Devices (see Suppliers Index).

*Also available in the 16-pin DIP package.

12 Chapter Two

For Windows 3.X, use the File Manager program to create a subdirectory.
For Windows 95/98, use the Windows Explorer program to create the subdi-
rectory. Windows 95/98 users also have the option of opening a DOS window
within the Windows environment. You can work inside the DOS windows
using standard DOS commands.

You also have the option of restarting your computer in MS-DOS mode. In
most cases vou should be able to operate from the DOS window without
problems.

Start the DOS window by selecting “MS-DOS Prompt” under the Programs
menu under the Windows 95/98 “Start” button (see Fig 2.1). When the DOS
window opens, vou are probably starting the DOS session inside the Windows
subdirectory. Your prompt may look like this: C: /WINDOWS =.

The DOS prompt provides vital information. The C: tells us we are on the C
drive. The /'WINDOWS tells us we are in the Windows subdirectory.

We want to work from the root directory of the computer’s hard drive (usu-
ally the C drive). We accomplish this by using the cd (Change Directory)
command.

The cd. . command brings one up a single level in the directory hierarchy.
Using the cd\ brings one up to the root directory regardless of how deep (how
many levels) one has moved into subdirectories. The root directory is the top
of the directory hierarchy. From the Windows subdirectory either command

(3} Accssiie 'EEMHW’M! *
%) o] Adeka b] Pasiane Techeskay *
B () e dcinnal 41 v) Paschine fcosring ¥
() ATAT Workdhiet St # | () Phios *
%m » ggmwhz »
Aichs Prograns ¢ [PchPoke -
(2] Biwraetcons v L5 Pendgen L
(] Calomp * () Ouchlima »
(] Chassnn Biw s] :EE Feid L]
(= CIRCADSE *I fitekick I \winoms 200
(=] Conetd v (= Snoory ’
(2] Coeel Grachics r;@_mmmnmm »
(2} TP b) Gaillp *
() Erwet Subws b) Videslrak »
(F] HP Lol 5L L Pl % | (5] Wi 380 .
(] HE Displiy Lininy * E"ﬂﬂ L
[It Exploiee B el Py Dot Tadial %
= lomega Tocks ¢ bonowe
=] Fadt Poser Gioo * O mage
(= LEADTOOLE 10 EVAL LR T
() MelsluaierafnDatbies » 3§ Miciowt Excel
() Msipshe MFLAE » P Miciosoh Pubskthes 55
(3] Micraall Tavebepm Maticik & | T Micasll Woad
(=) Merosall Vel Bisic 50 #
(2] Moot Vaud CrED #) Windows Esploser
(= Nesicape Eommunscom .

() Moston detius .

Figure 2.1 Selecting “MS-DOS Prompt” from Program menu.

Software Installation (Compiler and Programmer) 13

may be used. Type cd. . or cd\ and hit the Enter key to back up a level in the
directory.

C:/WINDOWS=cd. . or C: /WINDOWS>odh

(See Fig. 2.2.)

You should now be in the C drive root directory; the DOS prompt will change
to C:/=. Once you are in the C drive’s root directory, you can start the task at
hand.

First, create a subdirectory on yvour hard drive called pictools. (If you don't
like the name pictools, choose another name that is more to your liking.) At the
DS prompt, enter the “make directory” command (md) followed by a space
and the name of the directory pictools. The complete command may look
like this:

C:f> md pictools

This command creates a subdirectory called pictools. Now let’s copy all the
files on the PICBasic Compiler 3.5-in diskette into the new directory.
Assuming that your 3.5-in disk drive is the A drive, at the DOS prompt, enter
C:f> xoopy a:*.* pictools /s

This command copies all the files on the diskette, including the subdirec-
tories, into the pictools subdirectory (see Fig. 2.2). With the files safely

|

S HOOPYEE i

[e 3 HlE(E] 25 A

Figure 2.1 Using =4 (change directory) and md (make directory) DOS commands at the DOS
prompt.

14 Chapter Two

loaded onto your hard drive, remove the diskette and store it in a safe place
in case it 1s needed in the future.

Installing the EPIC Software

We are still in the root directory for the C drive. From here, create another
subdirectory on vour hard drive called epic. (If you don't like the name epic,
choose another name that is more to your liking.) At the DOS prompt, enter

C:if> md epic

This creates another subdirectory called epic (Fig 2.3). Now let’s copy all the
files on the 3.5-in EPIC diskette into the new epic directory, as we have done
for the compiler software. Again assuming that vour 3.5-in disk drive is the A
drive, at the DOS prompt, enter

Cif> ¥oopy a:* . * epic f=

This command copies all the files on the EPIC diskette, including the sub-
directories, into the epic subdirectory as shown in Fig. 2.3. With the files safe-
ly loaded onto your hard drive, remove the diskette and store it in a safe place
in case it is needed in the future.

As you can see in the last fipure, only two files were copied from the A drive
into the epic directory. The reason is that the EPIC software is compressed in

"5 ME D5 Prost

[e o D@ 5] 25 A

Figure 2.3 Creating epic directory and copy files into it.

Software Installation (Compiler and Programmer) 15

the executable file epic203.exe. To run this program and decompress the files
first move into the epic subdirectory by typing in

C:Y ed epic

at the DOS prompt and hitting the Enter key (see Fig. 2.4). The DOS prompt
will change to C:%\epic=. To run the program type in “epic203” at the DOS
prompt, hit the Enter key (see Fig. 2.5). When 1 executed the program, it
issued a warning (see the bottom of Fig. 2.5) that a readme.txt file already
exists. Overwrite (y/n)? Answer y.

PIC Applications Directory

It would be a good idea if we created another subdirectory to store all our
PICMicro application programs. This will keep all our pictools and epic direc-
tories clean, neat, and uncluttered. If vou are performing these commands in
the sequence they appear in the book you are currently in the epic subdirec-
tory. We need to move back to the root directory before we do anything more.
Use the cd (change directory) command to move back into the root directory,
enter cd. .

C:hepics od. .

At the DOS prompt, hit the Enter key (see Fig. 2.6). The DOS will change to
C: %= signaling we are in the root directory. We are ready to create another

[e o Diilm) E5) 2 A

Figure 24 Running epic203.exe program to decompress the EPIC files.

Software Installation (Compiler and Programmer) 17

©4 M5 DS Pressot o
[ee 2] CllI@]] 25 Al

Figure 2.6 Moving back to the root directory using the cd DOS command.

"2 M5 005 Promih

e Cinel B 2[F Al

Figure 2.7 Creating applics directory and using the path DOS command.

18 Chapter Two

The path command may be typed in at the DOS prompt and once you hit the
Enter key will stay in effect for as long as the DOS window remains open (see
Fig. 2.7).

C:hyv> path Y;e:h\piletools;e:heple; o \windows' command ;

For those who are familiar with DOS commands, the path command can be
made permanent by entering it into or adding onto an existing path command
in the autoexec.bat file. For those who are not comfortable with DOS com-
mands or changing the set-up of the computer, don't touch the autoexec.bat
file. The autoexec.bat file is an important batch file that is run every time the
computer starts or is reset.

If you want to learn more about DOS and the autoexec.bat file to make these
changes, I recommend purchasing a tutorial book on DOS,

First Basic Program

We are now ready to write our first program. To write programs, you need a
word processor or text editor. Windows users can use the Notepad program.
DOS-level users can use the Edit program.

Since we want to store our programs in the subdirectory applics, the first
step is to move into that directory. We will use the cd (change directory) com-
mand. Enter this at the DOS prompt (see Fig. 2.8).

< ME DOS Frespt

[ae 3 B @]] 25 Al

Figure 2.8 Using the cd command and Edit program.

Software Installation (Compiler and Programmer) 19

Cihy> cd applics
Once in this directory the prompt changes to
Crhapplicss

In this example 1 will be using the free Edit program package with Windows
to write the program. Start edit by typing edit at the command prompt (see
Fig. 2.8).

C:happlicss edit

This starts the edit program (see Fig. 2.9). Enter this program in your word
processor exactly as it is written:

"First Basic program toe wink two LEDs connected to port B.
Loeop: High © *Turn on LED connected ta pin RBO

Low 1 *Turn off LED connected to pin REEL

Pause 500 ‘Delay for 0.5 =

Low 0 *Turn off LED connected to pin REEO

High 1 *Turn on LED connected to pin RBEL

Pause 500 ‘Delay for 0.5 =
Goto loop *Go back te loop and blink and wink LED=s forewver
End

See Fig. 2.10. Save the above as a text file in the applics directory. Use the Save

function under the File menu. Name the file wink.bas (Fig. 2.11). The .bas suf-
fix 18 optional. The compiler program will load and compile the file whether or

[M D05 Piempt | £1

File Edgit gearch View optionx HElp
T — 1) JE'L 1L 1oL -

Pl=H=lp Lin=:1 Cel=1

Figure 2.9 Opening screen of the Edit program.

20 Chapter Two

Compile

not it has the .bas suffix. The suffix helps us remember what type of file it is. If,
by accident, you saved the file as wink.txt don't get discouraged. You can do a
save As from the Edit program (under File menu) and rename the file wink. bas.

Remember, if yvou are using a different word processor, it is important to
save the program as an ASCII or MS-DOS text file. The reason is that the com-
piler (the next step) requires the text {ile (the basic source code) in a DOS or
ASCII file format. DOS and ASCII text files do not save any special formatting
and print codes that are unique to individual word processors.

The PICBasic compiler must be run from DOS or from a DOS window within
Windows. If you are still working in the same DOS session we started with,
skip over the next two sentences. If you just started the DOS window, enter
the path command as specified earlier. Use the od commands to move into the
applics directory.

We will run the PICBasic compiler from the applics directory, type the com-
mand pbo -plefs84 wink.bas at the DOS prompt, and hit the Enter key (see
Fig. 2.12).

O JARPPLICE»pbe -pleFE4 wink.bas

The compiler displays an initialization copyright message and begins process-
ing the Basic source code (see Fig. 2.13). If the Basic source code is without

File Edit’ Search View = optichs Help

U e] T

and blink £ wink LEDs

E‘1=H=lp Lin=:11

Figure 2.10 wink.bas program written using Edit.

Software Installation (Compiler and Programmer) 21

. MEDOS Prempt EDIT : o]
a3 Dl B 2[5 Al
File male Saarch e oprlions Help

Jawe As

File cans: [wink.bas

Civapplics

pndstdng Llead

[Ti=Help Entec=Bxecule Bsc=Cantel ‘Tab=Nexli Tisld

Figure 2.11 Saving text file as wink.bas.

'_- I_:||-|- -n.-l'-:'-. b |.

Figure 2.12 Running compiler on wink.bas file for the PIC 16F54.

22 Chapter Two

errors (and why shouldnt it be?), the compiler will create two additional files.
If the compiler finds any errors, a list of errors with their line numbers will be
displayed. Use the line numbers in the error message to locate the line num-
ber(s) in the .bas text file where the error(s) occurred. The errors need to be
corrected before the compiler can compile the source code correctly. The most
common errors are with basic language syntax and usage.

You can look at the files by using the dir directory command. Type dir at
the command prompt:

CeAVAPFLICS> dir

and hit Enter (see Fig. 2.14).

The dir command displays all the files and subdirectories within the sub-
directory where it is issued. In Fig. 2.14 we can see the two additional files the
compiler created. One file, the wink.asm file, is the assembler source code file
that automatically initiates the macroassembler’s compiling of the assembly
code to machine-language hex code. The second file created is the hex code file,
called wink.hex.

Programming the PIC Chip

To program the PIC chip, we must connect the EPIC programming carrier
board (see Fig. 2.15) to the computer. The EPIC board connects to the printer
port, also called the parallel port. (Either name may be used; they are both cor-

" MBD05 Pempt
[Fee 2 DH @] B8] B[S A

Figure 2.13 Compiler initialization messages and compiled program length in words.

24 Chapter Two

EPIC"

Peopramtnes

Capwy™ Dol 1aaa =nool =prwr g o et

Figure 215 EPIC programming carrier board.

with Windows 95, Windows 98, and Windows NT, but not with Windows 3.X.
It has been my experience that Windows 95 printer drivers often like to retain
control of the printer (LPT1) port. If this is the case with your computer, the
Windows epic program may not function properly, and yvou may be forced to
use the DOS-level program. If you receive the error message “EPIC
Programmer Not Connected” when vou start the Windows EPIC program, you
have the option of either troubleshooting the problem (see Troubleshooting
EPIC Software, below) or using the EPIC DOS program.

Using the EPIC DOS version

If vou are using Windows 95 or higher, vou can open a DOS window or restart
the computer in the DOS mode. If vou are using Windows 3.XX, end the
Windows session.

Troubleshooting EPIC Software: A Few Alternatives

If your computer has a single printer port (LPT1), you can add a second
(LPT2) port for a nominal amount of money. An inexpensive printer card will
cost about $20.00. If you have never added a card to your computer before,
don’t know the difference between an ISA or PCI, or never performed some
type of system upgrade to vour computer before, then I advise you to bring
your computer to a computer repair/service store in your area and have them
perform the upgrade.

Software Installation (Compiler and Programmer) 25

There is no guarantee that the EPIC software will work with a second LPT
port. You may still have to work at the DOS level to get it to function properly.

For instance, in order for me to run the EPIC DOS program from a DOS
window in Windows 95 I needed to remove my HP (Hewlett-Packard) printer
driver first (see Fig. 2.16). I opened the printer driver window and closed down
(exited) the program.

Continuing with the wink.bas program

Assume we are still in the same DOS session and we have just run the PBC
compiler on the wink.bas program. We are still in the applics directory. At the
DOS prompt, tyvpe epic and hit enter to run the DOS version of the EPIC soft-
ware (see Fig. 2.17).

If you are operating out of a DOS window you may get a device conflict mes-
sage box as shown in Fig. 2.18. We want MS-DOSS to control the LPT port so
the EPIC programming software will work. Select the MS-DOS Prompt and
hit the OK button.

EPIC’s opening screen is shown in Fig. 2.19. Use the mouse to click on the
Open button or press Alt-0 on vour keyboard. Select the wink hex file (see
Fig. 2.20). When the hex file loads, you will see a list of numbers in the win-
dow on the left (see Fig. 2.21). This is the machine code for your program. On
the right-hand side of the screen are configuration switches that we need to
check before we program the PIC chip.

- MDA Pruan
ae 7] U bI@) B8] 25 Al

applicesdir

_1®l=

Figure 2,16 Exiting printer driver program.

Software Installation (Compiler and Programmer) 27

Let’s go through the configuration switches one by one.

Device: Sets the device type. Set it for 8X.

ROM Size (K): Sets the memory size. Choose 1.
OSC: Sets the oscillator type. Choose XT for crystal.
Watchdog Timer: Choose On.

Code Protect: Choose Off.

Power Up Timer Enable: Choose High.

After the configuration switches are set, insert the PIC 16F84 microcontroller
into the socket. Click on Program or press R1lt-P on the keyboard to begin
programming. The EPIC program first looks at the microcontroller chip to see
if'it is blank. If the chip is blank, the EPIC program installs your program into
the microcontroller. If the microcontroller is not blank, you are given the
options of cancelling the operation or overwriting the existing program with
the new program. If there is an existing program in the PIC chip’s memory,
write over it. The machine-language code lines are highlighted as the PIC is
programmed. When the operation is finished, the microcontroller is pro-
grammed and ready to run. You can verify the program if you like by hitting
{or highlighting) the Verify button. This initiates a comparison of the program
held in memory with the program stored in the PIC microcontroller.

- ME DO P ®
Tl _|_1J E| 5 Al

EPIC PROGREMMER VER 1.41

Device

===y]

e RO EJ..EQ “‘:]

= Watchdog Timer

bde Frotect

r Power Up Timer EBEnshle

NAITING FOR CCOMMAND o

COran .i BCLIV I bout J

s |1 e |]

Figure 2.19 EPIC program’s opening screen.

28 Chapter Two

(" M5 Di_]!i E‘l:‘lll_ut FPIC

e 3 olm] B 2[5 ' = '

Figure 2.20 Selecting the wink. hex file.

Testing the PIC Microcontroller

If you purchased the components described in Chap. 1, vou can quickly set up
the test circuit. If not, yvou need to purchase those components now to continue.

The Solderless Breadboard

For those of us who have not dabbled in electronics very much, I want to
describe the solderless breadboard (see Fig. 2.22). As the name implies, you
can breadboard (assemble and connect) electronic components onto it without
solder. The breadboard is reusable; you can change, modify, or remove circuit
components on it at any time. This makes it easy to correct any wiring errors.
The solderless breadboard is an important item for constructing and testing
the circuits outlined in this book.

If you wish to make any circuit permanent, you can transfer the components
onto a standard printed-circuit board and solder them together with the fore-
knowledge that the circuit functions properly.

The internal structure of the board is shown in Fig. 2.23. The holes on the
board are plugs. When a wire or pin is inserted into a hole, it makes intimate
contact with the metal connector strip inside. The holes are properly spaced so
that integrated circuits and many other components can be plugged right in.

Software Installation (Compiler and Programmer) 29

GFLL ProAMMER VER

014 soec 00D 00

oneg :
l"FI-I

Batehdeq Tiner

Code Protest

007F 007F Power Up Timsr Enable

Ci\APELICI\WNINK.HEX

m‘ Logran i eriiy bout

€ad PIC -‘ lanikc? } rase B i [

Figure 221 Winlk hex file loaded into EPIC program.

xnrnn1 NOMNCH TOOO0 OecCne f“
i 6 10 18 20 et
ACNDoODOOOQOCONCNOOORNLNGn A
BCNOCODINOOOCONCNnonornen B
cronCOonanOonConCnnonoaEnrn G
OCOOCOO0Jo00odCcooCc oo oc o D
ECOOCOO0JO0OO0OCOOCOO0OOOCOoOCO E
L |
FOCDDOOZD2OODOOOCOOOZD2OZJ200D00 F
GOCDDOOD2O00DDOCOOQ20>2D0D00 6
HnoCcnonoooononooononoooanonn H
IDEEDDD]DDDDDEDDD]D]DDDD |
JOCOOOOINNONOCORNRDInNInnnn J
{ “YoooCco oDoooo JCOOC OCCOC f:j
| E 1] 15 20 -

Figure 2.22 Solderless breadboard.

You connect components on the board using 22-gauge (solid or stranded) wire.
I prefer to use stranded wire because it has greater flexibility.

The complete internal wiring structure of the board is shown in Fig. 2.24.
The X and Y rows are typically used as power supply and ground connections.
The columns below the X row and above the Y row are used for mounting com-
ponents.

30 Chapter Two

(VXxooooo ocooao {0
AQDODODOOCOOQOOOQOOO
BOO0OOOOOOOO0OOOn
CoooOooaoooooQ
POOOOOoOoOoOoOoooono
EQ0O0COOOOoCcOoooooog
| |
FDDDDDDDDDDDDDDD
Qouoooooooooooooo
Hoooooooooooooood
IDDDDDDDDDDDDDDDE
JOooooooooooooooodn

{‘J:j]TI?IDDDE; EIEIEIDEI DDEIEIEI l:-_._,r

Figure 2.23 Internal structure of the solderless breadboard.

=,
o

maaDy

i

FT

J

=X

.
s
-

1 5 10 15

T

7

Figure 2.24 Complete internal wiring of solderless breadboard.

Three Schematics, One Circuit

Figures 2.25, 2.26, and 2.27 are identical schematics of our test circuit. I drew
three schematics to help orient experimenters who may not be familiar with
standard electrical drawings. Figure 2.25 shows how the PIC 16F84 micro-
controller and components appear. There is a legend at the bottom that shows
the electrical symbols and the typical appearance of the components. Figure
2.26 is a line drawing showing how the components appear mounted on the
solderless breadboard. The labels in Fig. 2.26 point out each electrical com-

ponent.

If vou examine the placement of the components mounted on the solderless
breadboard with its internal electrical wiring (Fig. 2.24), you can see how the
components connect to one another and produce a circuit.

32 Chapter Two

O Xxoooao oo
1 5
ADOOQoOOoOOnO
BEOO0O@POOOO 22 pf
cooopooon
pOoOOgoO0OOO0
E O D LTy 01 D1 L g s
| L)
A FOe 0 O
7805 GoOoO ooo
HOOOO Red
Valt | OQAaoooo LED
Reg. J DE oo Side
HVCE et Y [O View
1 5 -
Gnd -
Auf 4. 7K 470 chm LED's Ground
Ground
Figure 2.26 Second view of components mounted on breadboard.
Copocitprs connected to crystals are Z2pk
+5 o1 +3Y
E: W wJKa L C1 >
RE7 ‘ T luF Regulated Power Supply
RBE MCLR! Ll
RES 16 1HHz ua
REt 0scl -+t 1 3
=1:F} 1
RB2 nsczl!'_iu-k R
RBL g
S 6= |+ add
A 4+ L3 4 CE
Raes/TOCK] — ==L 39uF =Ty
a3 — 12V 12v
RAE —_
i PIC 16F 84
Y35

Figure 2.27

Wink

Electrical schematic of wink project.

Apply power to the circuit. The LEDs connected to the chip will alternately
turn on and off. Wink... wink... Now you know how easy it is to program these
microcontrollers and get them up and running.

As you gain experience, using the compiler and programmer will become second
nature. You won't even consider them as steps anymore. The real challenge will
be writing the best PICBasic programs possible. And that is as it should be.

Software Installation (Compiler and Programmer) 33

L

e . fl"'\“‘i"" !
'R.E},-_.c-

I’"'I"Iﬁ: LR
mtrti 'I"I'!I‘

LR R
e

Figure 228 Photograph of wink project.

Troubleshooting the Circuit

There is not too much that can go wrong here. If the LEDs don’t light up, the
first thing I would check is the orientation of the LEDs. If they are put in back-
ward, they will not light.

Next check vour ground wires. See the jumper wires on the right-hand side
of the solderless breadboard. They bring the ground up to the two 22-pF
capacitors.

Check all your connections. Look back at Figs. 2.23 and 2.24 to see how the
underlying conductive strips relate to the push-in terminals on top of the
board.

Chapter Review

Before we move on to the next chapter, let’s review the important steps we
have learned in programming a PIC microcontroller. We will not review the
installation, because that’s typically a one-time job.

This review assumes we are working from DOS.

Step 1. Upon entering DOS, if you are not in the root directory, move to the
root directory using the cd command cd.. or cd’ =

Step 2. At the DOS prompt enter the path command:

C:h» path Y;e:hpletosls;e:\epie;e: \windows' command ;

34 Chapter Two

[

Parts List

Step 3. Enter the applics directory using the cd command:

Y cd applics

Step 4. Start vour word processor or the Edit program:

shapplicss edit

Step 5. Write the Basic program. Save the program as an ASCII-type text
file. Save the file with a .bas suffix (e.g., wink.bas). Note that .bas is optional.

Step 6. From the applics directory, run the PICBasic compiler. The command
line for compiling the wink.bas program for a PIC16F84 microcontroller is as
follows:

:happlies> pbeo -pleFB4 wink.bas

The -p1eFa4 tells the compiler to compile the program for this particular
microcontroller. The compiler is capable of writing for a large number of PI1C
microcontrollers you will find listed in the compiler manual. The .bas after
the program name is optional.

The compiler reads the .bas file and, if it finds no errors, generates two
files, wink.asm and wink. hex. If the compiler finds an error, the program
needs to be corrected and recompiled.

Step 7. Connect the EPIC programming board to the computer’s parallel
(printer) port. Turn on the EPIC board power supply.

Step 8. From the applics subdirectory run the EPIC DOS program.

happlicss epiec

Load the program’s .hex file. Insert a PIC 16F84 into the programming
socket on the programming board. Highlight the Program button and hit the
Enter key on yvour keyboard to program the PIC microcontroller.

Remove the PIC microcontroller chip and test it.

In the next chapter, we will look at output-programmable attributes of the
16F84.

Same components as listed for Chap. 1.

PIC 16F&4 Microcontroller 37

Examine Table 3.1. This table shows the decimal- and binary-number equiv-
alents for the numbers 0 through 31. Using this information, the hinary num-
bers from 32 to 255 can be extrapolated.

In the table, each decimal number on the left side of the equal sign has its
binary equivalent on the right side. So when we see a decimal number, the
microcontroller will see the same number as a series of 8 bits (8 bits to a byte).

Registers and Ports

The PIC 16F84 contains two /O ports, port A and port B. Each port has two
registers associated with it, the TRIS (Tri State) register and the port register
address itself.

The TRIS register controls whether a particular pin on a port is confipured
as an input line or an output line. Once the ports are configured the user may
then read or write information to the port using the port register address. (The
terms pins and lines off the PIC 16F84 mean the same thing and are used
interchangeably throughout the text.}

On port B we have eight I/O lines available. On port A only five I/O lines are
available to the user. Figure 3.1 shows the relationship between a binary num-
ber and the two PIC microcontroller registers that control port B. Let’s look at
the binary-number side. Notice that for each move of the binary 1 to the left,
the exponential power of 2 is increased by 1.

TABLE 3.1 Binary Number Table

0 = 00000000 16 = 00010000 32 = 00100000
1 = 00000001 17 = 00010001

2 = 00000010 18 = 00010010

3 = 00000011 19 = 00010011

4 = 00000100 20 = 00010100 64 = 01000000
& = 00000101 21 = 00010101

6 = 00000110 22 = 00010110

T = 00000111 23 = 00010111

& = 00001000 24 = 00011000 128 = 10000000
9 = 00001001 25 = 00011001

10 = 00001010 26 = 00011010

11 = 00001011 27 = 00011011 .

12 = 00001100 28 = 00011100 2556 = 11111111
13 = 00001101 29 = 00011101

14 = 00001110 a0 = 00011110

15 = 00001111

31 = 00011111

38 Chapter Three

Port B

TRISB Decimal134 B6 Hex PortB Decimal6é 06 Hex

Power Power
Binany of Twa Binary of Twwa
oronand1 2 =1 apgooop 2 =1
oposapir =2 Donodn * =32
gnngron =4 pononing X =4
fsininas 2 =3 ifitaam 2 =%
oMioMe =% — DoMHDom =16
ooiguoop 7 =38 romnaNg 2 =32
1000000 2 =64 (00K 2= 63
1D0o0DOn 2° =428 oM 27 = 123
Bit 'ul'l'\:igllll‘l.l'allm-s 12R %3 32 1B H 4 & A Bil wﬂlwmmm__., 123 B4 X G B 4 0 F 1
Rogisbor Locatian | | | | | | | | Foaislor Locatior | | [[[1

L = L] = i &N T g
w L E @ BHE O @ =9
= E F E F E KR =

RET
REE
rEs
REBA
RBEZ
23]
B

=
2

Figure 3.1 Port B I/0 lines and registers.

Bit # Decimal Binary

Bit 0 1= 00000001
Bit 1 2= 00000010
Bit 2 d = 00000100
Bit 3 8= 00001000
Bit 4 16 = 00010000
Bit b 32 = 00100000
Bit 6 64 = 01000000
Bit 7 128 = 10000000

These are relevant numbers, because each position identifies a bit location and
bit weight within the 8-bit byte.

For instance, suppose we wanted to write binary 1s at the RB7 and RB4
locations. To do so, we add their bit weights together, in this case 128 (RB7)
and 16 (RB4), which equals 144. The binary equivalent of decimal number 144
is 10010000. If yvou slide that number into the register, vou will see
that the binary 1ls are in the RB7 and RB4 positions. Remember this; it is
important.

The open TRISB register shown in Fig. 3.1 may be used to examine numbers
placed in the TRISB. The port B register may be used to examine numbers placed
at the port B register.

PIC 16F84 Microcontroller 39

Notice the correlation between the register bit locations, bit weights, and
port B I/O pins. This correspondence between the bit number, bit weight, and
the /O line is used to program and control the port. A few examples will
demonstrate this relationship.

Using the TRIS and port registers

The TRIS register is a 1-byte (8-bit) programmable register on the PIC
16F84 that controls whether a particular I/O pin is configured as an input
or an output pin. There is a TRIS register for each port. TRISA controls the
I/O status for the pins on port A and TRISB controls I/O status for the pins
on port B.

If you place a binary 0 at a bit location in TRISB for port B, the corre-
sponding pin location on port B will become an output pin. If vou place a bina-
ry 1 at a bit location in the TRISB, the corresponding pin on port B will
become an input pin. The TRISB data memory address for port B is 134 (or
86h in hex).

After port B has been configured using TRISB register, the user can read or
write to the port using the port B address (decimal number 6).

Here is an example. Suppose we want to make all port B lines output lines.
To do so we need to put a binary 0 in each bit pesition in the TRISB register.
So the number we would write into the register is decimal 0. Now all our I'O
lines are configured as output lines.

If we connect an LED (light-emitting diode) to each output line, we can see
a visual indication of any number we write to the port B. If we want to turn on
the LEDs connected to RB2 and RB5, we need to place a binary 1 at each hit
position on the port B register. To accomplish this we look at the bit weights
associated with each line. RB2 has a bit weight of 4, and RB5 has a bit weight
of 32. We add these numbers together (4 + 32 = 36) and write that number
into the port B register.

When we write the number 36 into the port B register, the LEDs connected
to RB2 and RB5 will light.

To configure port A, we use the TRISA register, decimal address 133 (see Fig.
3.2). On port A, however, only the first 5 bits of the TRISA and the corre-
sponding [/O lines (RAO to RA4) are available for use. Examine the I/O pin out
on the 16F84 and you will find that there are only five I/O pins (RAO to RA4)
corresponding to port A. These pins are configured using the TRISA register
and used through the port A address.

Memory location Memory location
Register Thexadecimal) idecimall
Port A 05h 5
Port B 06h &
TRISA &5h 133

TRISB 86h 134

40 Chapter Three

Port A

TRISA Decimal 133 85 Hex Port A Decimal 5 05 Hex

P _ Poaurer
Blnary of Twe Binary af Twa
aopMonT =1 angom =1
aosreE '=? 40s000ta =12
Cooni & =4 ———————— aopgipn =4
onpniom 2 =48 QoMiopn ¥ =8
QomDM 2 =16 W =18
Bil WeightValues % B 4 2 Bit WaightWalwas & & 4 2 1
Reglster Locatlon | | | | Registar Locatior || | [| |
35 335 g 33 % z¢8
(v r (1 i ' r'd ' 9 o

Figure 3.2 Port A 'O lines and registers.

On power-up and reset, all the I/O pins of port B and port A are itialized
(configured) as input pins. Of course, we can change this with our program.

Here is another example. Let’s configure port B so that bit 7 (RB7) is an
input pin and all other pins are output lines. To place binary 0s and 1s in the
proper bit location, we use the bit weights shown in Fig. 3.1. For instance, to
turn bit 7 on (1) and all other bits off (0), we would write the decimal number
128 into the TRISB for port B. In Basic, the command to write to a register is

the Poke command. The program line to write the decimal value 128 into the
TRISB register will look like

Poke 134,128

The number after the Poke command is the memory address that the com-
mand will write to—in this case, 134, which is the data memory address of the
TRISB for port B. The next number, after a comma is the value we want to
write in that memory address. In this case, it 1s 128,

Look at the binary equivalent of the decimal number 128:

10000000

Mentally place each 1 and 0 into the TRISB register locations shown in Fig.
3.1. See how the 1 fits into the bit 7 place, making that corresponding line an
input line, while all other bit locations have a () written in them, making them
output lines.

So by pokeing (writing) this location with a decimal number that represents
a binary number containing the proper sequence of bits (0s and 1s), we can
configure the pins in the port to be any combination of outputs and inputs that

PIC 16F84 Microcontroller 41

we might require. In addition, we can change the configuration of the port “on
the fly" as the program is running.

To summarize, pokeing a binary 1 into the TRIS register turns that corre-
sponding bit/pin on the port to an input pin. Likewise, pokeing a binary 0 will
turn the bit into an output.

Accessing the Ports for Qutput

Once the port lines have been configured (input or output) using the TRIS reg-
ister, we can start using the port. To output a binary number at the port, sim-
ply write the number to the port using the Poke command. The binary
equivalent of the decimal number will be outputted as shown in our first
example. To output a high signal on RB2, we could use this command:

Poke &, 4

where 6 is the memory address for port B and 4 is the decimal equivalent of
the binary number we want to output. Reading input information on the ports
will be discussed in Chap. 4.

Electrical Binary, TTL, and CMOS

When a pin on port B (RB0 to RB7) is configured as an input line, the micro-
controller can read (via the Peek command) the electrical voltage present on
that input pin to determine its binary value (0 or 1).

When a pin on a port is configured as an output, the microcontroller can
raise the voltage on that pin to +5 V by placing a binary 1 at the hit location
on the port. A binary 0 at the bit location will output a zero voltage.

When a pin (or bit) is set to 1 it may be called “on,” “set,” or “high.” When a
bit is set to 0 that may be called “off,” “cleared,” or “low.”

In TTL logic, electrically, a binary 1 is equal to a positive voltage level
between 2 and 5 V. A binary 0 is equal to a voltage of 0 to 0.8 V. Voltages
between 0.8 and 2 V are undefined.

CMOS has a slightly different definition. Input voltages within 1.5 V of
ground are considered binary 0, whereas input veltages within 1.5 V of the
+5-V supply are considered binary 1.

Digital logic chips (TTL and CMOS) are available in a number of subfami-
lies—CMOS: 4000B, 74C, 74HC, 74HCT, 74AC, T4ACT: and TTL: 74LS,
T4ALS, T4AS, T4F. These differences become important when you need to
make different logic families talk to one another.

CMOS devices swing their outputs rail-to-rail so +5-V CMOS can drive
TTL, NMOS, and other +5-V-powered CMOS directly. [The exception to this is
old-fashioned CMOS (4000B/74C).| TTL devices on the other hand may not
output sufficient voltage for a CMOS device to see a binary 1, or “high” signal.

This could have been a problem, since the PIC 16F84 is a CMOS device. The
designers of the PIC were thoughtful enough to buffer the I'O lines with TTL
buffers, thus allowing the PIC I/O lines to accept TTL input levels while outputting

42 Chapter Three

full CMOS voltages. This allows us to directly connect TTL logic devices, as well as
CMOS devices, to our PIC microcontroller without difficulty.

Counting Program

To illustrate many of these concepts, I have written a simple Basic program.
It is a binary counting program that will light eight LEDs connected to port
B’s eight output lines.

The counting program will light the LEDs in the sequence shown in the
binary number table. Each hinary 1 in a number in the table will be repre-
sented with a lit LED. Every 250 ms (Y, s), the count increments. After reach-
ing the binary number 255 (the maximum wvalue of a byte), the sequence
repeats, starting from zero.

Counting in binary by one

Enter the following program into your word processor exactly as it is written.
Save it as an ASCII text file (or DOS text) with the bas extension.

"Program 3.1, Binary Counting
"Initialize wvariables

Symbol TRISE = 134 ‘Agsign TRISE for port B to decimal value of 134
Symbol Fortk = & *Assign the wvariable portB to the decimal value &
'Initialize Port{s)

Foke TRISE, O * Set port B pins to output

loop:

For BO = 0 to 255

Poke PortEB, BO *Place BO wvalue at port te light LEDs

Pause 250 ‘Without pause, counting proceeds too fast to see
Mext BO ‘Next BO wvalue

Goto loop

‘end

Let’s look at the program and decipher it line by line. The first two lines are
comments, which begin with a single quotation mark ().

"Program 3.1, Binary Counting
"Initialize wariables

The compiler ignores all text following a quotation mark. You should use
comments liberally throughout vour Basic code to explain to yvourself what
yvou are doing and how you are doing it. What appears obvious to you when
yvou are writing a program will become obscure a few months later. All com-
ments are stripped when the program is compiled into .hex and .asm files,
s0 you can add as many comments as you like—they do not take up any pro-
gram space.

The following two lines initialize two important variables. The TRISB is
assigned the decimal value of 134 and the port B represents the port B
address, decimal wvalue of 6, for subsequent use in the program.
Technically, we don’t need to initialize these variables. We could write the

PIC 16F&4 Microcontroller 43

decimal equivalent (number 134) instead of using the TRISBE variable
when needed by the program. So if we wanted, we could write POKE 134,
XX instead of POKE TRISAR, XX. However, when initializing variables,
especially in more complex programs, using a mnemonic variable for deci-
mal values makes writing the programs and following the logic easier and
less error-prone.

Eymbol TRISE
Eymbol Portik

134 ‘Agsign TRISE for port B to decimal wvalue of 134
[‘Agsign the variable PortB the decimal wvalue &

The variable TRISB now represents a decimal value of 134, and the variable
PortB now represents a decimal value of 6. Hereafter in the program, we can
refer to TRISB without needing to remember its numerical value, and the
same 1s true for PortB. The comments following each instruction provide valu-
able information on what each command is doing.

"Initialize Porti{s)

This is a comment that tells what 1s to follow.

Poke TRISE, 4 * Set all port B pins to output

The following line is the command that initializes port B with a zero, mak-
ing all the port B lines output lines.

loop:

This line contains a label called loop. The word loop is clearly identifiable
as a label because of the colon (:) following the word. Labels can be referred
to in the program for jumps (Goto’s and on value) and subroutines
(Gosub’s).

For BO = 0 LKoo 2G5

This line defines our variable B0. In standard Basic, this line would proba-
bly read for x = 0 to 255. In this line we are using one of PICBasic’s pre-
defined variables, B0O. The 16F84 has a limited amount of RAM that can be
accessed for temporary storage. In the case of the 16F84, there are 68 hytes of
RAM. Of this total area of 68 bytes of RAM, 51 bytes are available for user
variables and storage.

User-available RAM

RAM may be accessed as bytes (8-bit numbers) or words (16-bit numbers).
PICBasic has predefined a number of variables for us. Byte-sized variables are
named B0, B1, B2, B3,..., B61. Word-sized variables are named W0, W1,
W2,..., W25. The byte and word variables use the same memory space and
overlap one another.

Word variables are made up of two byte-sized variables. For instance, W0
uses the same memory space of variable hytes B0 and B1. Word variable W1
is made up of bytes B2 and B3, and so on.

44 Chapter Three

Word variables Byte variables Bit
Wo BO Bit0, Bitl,..., Bit 7
Bl Bit8, Bit9,..., Bitls
W1 B2
B3
W2 B4
B5
W39 B78
B79

The variables may be used for number storage. The variables may also be
given a name that has meaning in the program by using the command Symbol.
For instance we could rename our variable B0 to X to make this program read
more like a standard Basic-language program.

We used the Symbol command in the beginning of the program to store the
variables TRISB and PortB.

If you write a program that uses more variables than the PIC microcontroller
has RAM to store, the PICBasic compiler will not generate an error when it
compiles the program. Your program will simply not function properly. It is up
to you to keep track of how many variables are being used in the program. For
the 16F84, you may use up to 51 bytes or 25 words, or a combination of both.

When vou program other PIC microcontrollers, check their data sheets to
see how much RAM they have available.

Poke PortBE, BO *Place BO value at port to light LEDs

This line writes the value B0 to PortB. Any binary 1s in the number are dis-
played by a lit LED.

Pause 250 ‘Without pause, counting proceeds too fast to see

This line makes the microcontroller pause for 250 ms (Y, s), allowing us
enough time to see the progression.

Hext BO ‘Mext BO wvalue

This line increments the value of BO and jumps up to the For B0 = 0 to
255 line. If the value of BO equals the end value declared in the line (255), the
program drops to the next line.

Goto loop

When B0 equals 255, the for-next loop is finished and this line directs the pro-
gram to jump to the label loop, where the BO value is reinitialized and the
number counting repeats, starting from zero.

Figure 3.3 shows the schematic for this program. Figure 3.4 is a photograph of
this project. Notice that I used a second solderless breadboard to hold the resis-
tors and LEDs so I wouldn't have to squeeze everything onto a single breadboard.

48 Chapter Three

Identifiers

Line labels

Symbols

Variables

(and probably forgotten) the program. Comments begin with a single quota-
tion mark () or with the word REM. The compiler ignores all characters on the
line following the quotation mark or the keyword REM.

Identifiers are names used for line labels and symbols. An identifier may be
any sequence of letters, digits, and underscores, but it must not start with a
digit.

Identifiers may be any number of characters in length; however, the com-
piler will recognize only the first 32 characters.

Identifiers are not case-sensitive, so the labels LOOP:, Loop:, 100P:, and
loop: will be read equivalently.

Labels are anchor points or reference points in your program. When you need
the program to jump to a specific program location through either a Goto,
(Gosub, or Branch, use a label. Labels are easy to use. Use a descriptive word
(identifier) for a label, such as the word loop: that we used in Programs 3.1
and 3.2. Loop is descriptive inasmuch as it shows the main loop point for the
program.

Labels are identifiers followed by a colon (:).

Symbaols help to make our programs more readable. They use identifiers to
represent constants, variables, or other quantities. Symbols cannot be used for
line labels.

In our programs, we used the symbol TRISB to represent the decimal num-
ber 134. The number 134 is the data memory address for the TRISB register
for port B. The symbol PortB represents the memory address for port B.
Symbols are easier to remember than numbers. Here are a few examples of the
symbol keyword usage.

Eymbol Five = 5 ‘Symbolic constant

Eymbol Mumber = W2 ‘Hamed word variable
Eymbol Bvalue = BITOD ‘Hamed bit wvariable
Eymbol A¥A = Bvalue *An alias for Bvalue

Variables are temporary storage for your program. A number of variables have
been predefined for usage in your programs. Byte-sized (8-bit) variables are
named B0, B1, B2, and so on. Word-sized (16-bit) variables are named W0, W1,
W2, and so on.

Remember these variables overlap and use the same memory space.

52 Chapter Four
+3VY +oV
-

SW

vk 5 1,

1

+GT0 Pin I/0 Pin
0 S

SW

Figure 41 Switches connected to 'O line (pin).

Var Byte-sized variable used for delay/repeat countdown. Should be initialized
to 0 prior to use.

Action State of button in order to perform Goto (0 if not pressed, 1 if preased).

Label Point at which execution resumes if Action is true.

Let’s take another look at the switch schematic in Fig. 4.1 hefore we start
using the button switch to visualize how the switches affect the /O pin elec-
trically.

The switch labeled A in Fig. 4.1 connects the /'O pin to a 15-V power supply
through a 10,000-L) resistor. With the switch open, the electrical status of the
I/O pin is kept high (binary 1). When the switch is closed, the I/O pin connects
to ground, and the status of the I/O pin is brought low (binary 0).

The switch labeled B in Fig. 4.1 has an electrical function opposite the
switch labeled A. In this case, when the switch is open, the I/O pin is connect-
ed to ground, keeping the I/O pin low (binary 0). When the switch is closed, the
I/O pin is brought high (binary 1).

In place of a switch, we can substitute an electrical signal, high or low, that
can also be read using the Button command.

Typically the Button command is used inside a program loop, where the pro-
gram is looking for a change of state (switch closure). When the state of the I'O
pin (line) matches the state defined in the Down parameter, the program exe-
cution jumps out of the loop to the Label portion of the program.

Debouncing a switch

Debouncing is a term used to describe eliminating noise from electric switches.
If you took a high-speed electrical photograph, off an oscilloscope, of an elec-
tric switch closing or opening, the switch’s electric contacts make and break
electric connections many times over a brief (5- to 20-ms) period of time. This
making and breaking of electric contacts is called bounce hecause the contacts
can be easily visualized as bouncing together and separating. Computers,

Auto-repeat

Reading IO Lines 53

microcontrollers, and many electronic circuits are fast enough to see this
bouncing as multiple switch closures (or openings) and respond accordingly.
These responses are typically called bounce errors. To circumvent these bounce
errors, debounce circuits and techniques have been developed.

The Button command has debounce features built in.

If you press a key on your computer keyboard, the character is immediately
displayed on the monitor. If you continue to hold the key down, there is a short
delay, following which a stream of characters appears on the screen. The
Button command’s auto-repeat function can be set up the same way.

Button example

To read the status of a switch off I/O pin 7, here is the command we will use
in the next program:

Butteon 7, 0,254,0,B1,1, locop

The next program is similar to Program 3.1 in Chap. 3, inasmuch as it per-
forms binary counting. However, since we are using PB7 (pin 7) as an input
and not an output, we lose its bit weight in the number we can output to port
B. The bit weight for pin 7 is 128, so without pin 7 we can display only num-
bers up to decimal number 127 (255 — 128 = 127). This is reflected in the first
loop (pin7/bit 7 = 128).

The program contains two loops; the first loop counts to 127, and the current
number’s binary equivalent is reflected by the lit LEDs connected to port B.
The loop continues to count as long as switch SW1 remains open.

When SW1 is closed, the Button command jumps out of loop 1 into loop 2.
Loop 2 is a noncounting loop in which the program remains until SW1 is
reopened. You can switch back and forth between counting and noncounting
states.

Figure 4.2 is a schematic of our button test circuit. The difference between
this schematic and the schematic used in Chap. 3 is that we added a 10-k(}
resistor and switch to pin 7 and removed the LED (see Fig. 4.3).

‘Program 4.1

Eymbol TRISE = 134 ‘Set TEISE to 134
Eymbol PortE = & ‘Set PortB to 6
'Initialize Port{s)

Poke TRISE,1Z8 *Set port B pins 1-6 to output, pin 7 to input
loopl : " Counting loop

For BOo = 0 to 127

Poke FortB, BO ‘Flace BO wvalue at port B to light LEDs

Bl = 0O ‘Set Button variable to ©:

Pause 250 ‘Without pause, counting is teo fast to see
Button 7,0,254,0,EB1,1,100pz * Check Button status—if cleosed, jump

Mext BO ‘Hext BO wvalue

Goto loopl
loop2 : ‘Second loop—not counting

54 Chapter Four

Dupocisrs connecicd 4o erysta.z are 22pfF.

+IV

ray @
% J1 4 FL
TN 4.l
2 oo
e et XL
RS " +Hbz
RE 056 I
R . O
FIBEI pscg——4
Ra [=l'] R P, [-H] Bt ;
we| St wi 70 »F0 NFR é
PIC 16Fg4

W1 N 2 . 5 i 3,
~ 7 1] o4 3
_L-I:. “Fred W“Sfred 'ﬁzﬁd tﬁlren ‘tﬁz?eﬂ =5

| C1
—r—

= 1LF

Figure 4.2 Schematic of test button cireuit.

Figure 4.3 Photograph of test button circuit.

Reading IO Lines 55

Poke portB,0 *Turn off all LEDs

El= a ‘Set Button wvariable to zero before use
Butten 7,1,254,0,B1,1,loopl ‘Check Button status—if open, Jjump back
Goto loopz

When the program is run, it begins counting. When the switch is closed, all
the LEDs turn off and it stops counting. When the switch is opened, the count-
ing resumes, starting from 0.

Dynamic Changes

The previous program used one switch to start and stop the counting function.
Now let's use two switches to dynamically modify the program as it is running.
What dynamic modification could we make? How about changing the timing
delay?

Now we need two switches: one switch to decrease the delay to make count-
ing go faster, and the other switch to increase the delay to make it go slower.
To connect another switch, we need to borrow another port B line. I decided to
use line PB6, to monitor another switch status (see schematic in Fig. 4.4 and
photograph of project in Fig. 4.5). The switch connected to PB7 inecrementally
increases the timing delay to a 1-s maximum time. The switch connected to
PB6 incrementally decreases the delay to approximately 10 ms. At a 10-ms
time delay, the LEDs will be counting so fast it will appear as if all the LEDs
were lit simultaneously.

'Program 4.2

Eymbol TRISE = 134 ‘Set TRISE to 134

Eymbol TRISE = & ‘Set PortB to &

El = 0:B2 = 0

Eymbol delay = W4 *Initialize delay variable

W4 = 250 ‘Initialize variable to 250-ms delay

"Initialize Port{s)

Poke TRISE, 192 ‘Set port B pins 0-5 to outpubt, pins & and 7 to
‘input

loopl : ‘Main counting loop

For BO = 0 Lo &3

Poke PortB, BO ‘Place BO value at port to light LEDs

Fause delay ‘Without pause, counting is too fast to see

Bl = 0: B2 = 0 ‘Set to 0 before using in Button command

Button 7,0,1,0,B1,1,loopz ‘Check SW1 status - if closed jump
‘delay the same

Butten &,0,1,0,B2,1,loap3 ‘Check SW2 status—if cleosed, Jjump
‘delay the same

Next BO ‘Next BO wvalue

Goto loopl

loop2 : ‘loop2 increases time delay

delay = delay + 10 ‘Increase delay by 10 ms

Bl = 0: Pause 100

Butten 7,1,1,0,E1,1,loopl 'Check button status—if opened, jump
'increasing

If delay = 1000 Then holdl ‘don’t go over 1-s delay
Goto loopz

56 Chapter Four

A Capocitors comnected to cryatols ara 22pF.

~5¢® : Pl
-—]_'_,%b—ll1 $FKn _L_r1
[} Bl T[TelaF
g5t weLrpd %1
_ LR osciE ey b
=50 | =5¥ s L = :]_
3 fpel gsca—— 3y
———L#
PED/INT
1
Ry | Rs | 2RZ CRE fRS PRt ¢R {Fi eopas el g
W 13| JHF 4T J4M SNT0 JH0= 4 iz ¢
T 14
= | (TN g PIC 1&F84
Al S sAng b s lpe »lps oLoe sl LEH]
—L_" —I:? 1Lﬁzl""!-ﬂ ;#:ﬂ r'?r =d 1¥¥rad T ad 5 g

Figure 4.4 Schematic of multiple button test circuit.

-
-
.
-
'3
L]

(I E R RN E R
*®

ETERE

- EEREw
- messs

Figure 4.5 Photograph of multiple button test circuit.

loop3:

delay = delay - 10

B2 = 0:Pause 100

Butten 6,1,1,0,E2,1, loopl

If delay = 20 Then holdZ2
Goto loop3

holdl:

delay = 1000

Goto loop2

holdz:

delay = 10

Goto loopld

Program 4.2 Features

Reading I/O Lines

‘Second loop decreases delay
‘Decrease delay by 10 ms

‘Check button status—if opened, jump
‘decreasing

‘Hot less than 10-ms delay

‘Maintain delay at upper limit
‘Maximum delay

‘Return te the calling loop
‘Maintain delay at lower limit
‘Minimum delay

‘Return to the calling loop

57

We have introduced a few new program features; let's review them now before
we continue. Primarily we wrote a standard Basic-language decision-making

(If-Then) command line.

If..Then

In this program, the If. Then is used to limit the upper and lower limits of the
timing delay between increments in the binary counting. In standard Basic,

this line would appear as

If delay = 1000 Then delay = 1000

This line would effectively limit the upper limit to 1000 ms or 1 s. However, in
the PICBasic compiler language, the If.. Then command cannot be used in this
way. While we still have the ability to test two variables with a comparison,
the Then portion of the If Then is essentially a Goto.

If cowmparison {and/or compariseon) Then Label

If the condition is true, the program will perform a Goto to the label men-
tioned after Then. If the condition is false, the program continues on the next
line after the If. Then. Let's look at this using a few examples. Suppose the
variable delay is equal to 1010. The line

If delay = 1000 then holdl

would cause the program execution to jump to the label hold1 and continue on

from there.

On the other hand, if the delay variable is equal to 990, no action would be

taken by the line

If delay = 1000 then holdl

and program execution would continue on to the next line.
Unlike the standard Basic language, another statement may not be placed
after Then. You can only use a Label after Then.

58 Chapter Four

For instance the line

if delay = 1000 then delay = 1000

iz not allowed in PICBasic.

Like the standard Basic language, there are multiple comparisons available.
You can use the following comparisons in the If. Then command line:

Var {=, ==, =, =», =»=, =) Value
Comparison Meaning
= Less than

=

Less than or equal to

Equal to

Mot equal to

= Greater than or equal to
=

M
W

Greater than

All comparisons must be unsigned. The compiler supports only unsigned
types. The variable in the comparison must appear on the left.

In this program, we limit the delay value in the If. Then line by jumping to
a small subroutine called holdl if that condition is true. The holdil subrou-
tine performs the limit function for us.

If delay = 1000 Then holdl

haldl .

delay = 1000 ‘Maximum delay
Gota loop2 ‘Return to the calling loop

This is a somewhat convoluted way to accomplish the task needed, but it
works.

Word variable

Notice that our delay variable is a 2-byte word variable W4. Can you figure out
the reason why we need a 2-byte variable? If you think it's because a 1-byte
variable can hold only a maximum number of 255, and our delay can go up to
1000, you are right. In order to hold a number greater than 255, we need to
use at least 2 bytes. So what is the maximum number our 2-byte variable can
hold? The answer is 65,535. If we used the maximum delay our 2-byte W4 vari-
able allowed, we would have to wait more than a minute (65.5 s) for each incre-
ment in the count.

The Variables Used in Button

The Button command line states that the byte variable used for delay/repeat
countdown should be set to initialized to zero prior to use.

Reading I/O Lines 59

Multiple Statements—Single Line

Peek

As with the standard Basic language, we can place multiple statements on a
single line. The statements must be separated by a colon (:). The fourth line in
program 4.2 is an example: B1 = 0:B2 = 0. Here we set the values of variables
B1 and B2 to zero.

We can also use the Peek command to check the status of any input line. The
advantages of the Peek command are as follows: Using Peek, one can read the
five I/O lines of port A (or the eight /O lines of port B) at once. This increases
the versatility of the PIC chip and allows our program to be more concise (less
convoluted), shorter, and easier to read.

To emphasize these points, let’s rewrite our last program using the Peek
command. This program uses the schematic shown in Fig. 4.6.

Looking at the schematic we can see the RA0O and RA1 lines are normally
kept high (15 V), binary 1 through the 10-k(} resistor. When a switch is closed,
it connects the pin to ground and the line is brought down to (ground) binary 0.

A photograph of this project is shown in Fig. 4.7.

"Program 4.3

Bymbol TRISE = 134 ‘Set Data Direction Register port B
Symbol TRISA = 133 ‘Set Data Directory Register port A
Symbol FortB = & ‘Initialize PortE to &

Bymbol Forth = 5 ‘Initialize Portd to 5

Symbol delay = W3 ‘Set up delay wvariable

W3 = Z50 ‘Initialize delay wvalue

‘Initialize Port (s)

FPoke TRISB, O ‘Set port B pins as outpub

+ Zopoctors Coanected 1o Srpstola e giph.

o L
.

. m =:H|'|I'..
s 3,1

%H éﬁr "7 ;RE RS ORw P
$I0 L3 1] _‘1‘:"] =20 4 =30 ¥k

)

: el s [I PR, T .
tf]ze:u ‘T-ed ‘QT!E:u tSlzrrd 'Slzrzd *Nrec Freag ™

Figure 46 Schematic using Port A lines for push buttons.

FiC 1zF &4

||}—

60 Chapter Four

L
LA RS [AR EY R R RS D
A s s EBEEResEsREEseBEREw

Figure 4.7 Photograph of project using Port A lines for buttons.

Poke TRISA,3
loopl :

For BZ = 0 Lo 255
Poke PortB, B2
pause 250

Peek Porth,EBO

If hitd = 0 Then loop2
If kitl = 0 Then loop3
Hext BZ

Goto loopl

loop2

Poke PortB, 0

delay = delay + 10
pause 100

If delay = 1000 Then holdl
Peek Porth,EO

If bitd = 1 Then loopl
Goto loop2

loop3d

Poke PoOrtE, 0

Peek Forth,EBEO

If kit 1 = 1 Then loopl

*Set pin 1 and pin 2 of port A as input
*Counting loop

*Place B2 wvalue at port to light LEDs
‘*Without pause, counting proceeds too fast to
‘zDee

‘Peek SW status on Porth

*If Wl is ¢losed, jump to loop2

*IE 8wz is ¢losed, jump to loop3
‘Next B2 value

‘Repeat

‘Increment binary counting delay
*Turn off all LEDs

*Increase delay by 10 ms

‘*Delay or timing changes too guickly
*Hob over 1-s2 delay

‘*Peak SW1 status on Porth

*I1f opened, jump back to loopl
‘Repeat

‘Decrement binary counting delay
*Turn off all LEDs

‘PFeak SW2 status on Forth

*I1f opened, jump back to loopl

Reading IfO Lines &1

delay = delay - 10 ‘Decrease delay by 10 ms

If delay <« 10 Then hold2 ‘If less than 10 ms, hold at 10
Gotoe loop3 ‘Repeat

holdl: ‘Hold at 1-s routine

delay = 330
Goto loopz2
holdz: *Hold at 10-ms roubtine
delay = Z0
Gotoe loop3

Program 4.3 may appear as large as Program 4.2, but there is a major dif-
ference: Program 4.3 is utilizing both ports on the PIC 16F84. We can easily
see the impact this has by looking at the schematic in Fig. 4.6.

In this schematie, we are using the entire port B to light eight LEDs. Since
we can use the entire port B, we can count to decimal 255. We can do this
because we can connect the two switches to port A. Incidentally, I could have
reduced the size of this program by eliminating the lines for the TRISA setup.

If you remember, upon start-up or reset, all port lines are configured as
input lines. Since this is how we need port A set up, I could have eliminated
those lines dealing with the TRISA. Instead I decided to show a standard port
A setup, even though it wasn’t needed in this particular application, as an
example setup.

New Features

BitD .. Bit15

Program 4.3 introduced a few new features. The first new command used is
the Peck command. The Peek command structure is as follows: the command
Peek is followed by a memory address, then a comma, then a storage variable.

Peek Address, Var

As its name implies, the Peek command allows one to view (or peek at) the
contents of a specified memory address. Typically the memory address “peeked
at” is one of the PIC microcontroller’s registers. The peeked value is stored in
a variable Var defined in the command.

In this program we peeked at the input lines on port A. (Remember, the lines
on port A cannot be read using the Button command.) The Peek command
allows us to look at the two input lines on port A simultaneously.

Peek Porth, BO

The Peek command can read an entire byte (8 bits) at once; or, as in the case
of port A 5 bits, only the lower 5 bits of the peeked value are relevant.

The first 2 bytes of RAM memory, BO and B1, are special. This is because we
can test the bit values contained in each byte. If you remember, for byte B0,
the bit variables are predefined as Bit0 through Bit7. For byte B1, the prede-
fined bit variables are Bit8 to Bit15.

62 Chapter Four

The next two commands used in the program use the bit variables to allow
us to look at and test the individual bits that make up byte BO.

If kitd
If hirl

0 Then loop2
a0 Then loop3

The logic of the program follows, just before we tested the bit values we
peeked PortA and saved the results in variable BO.

Peek Porta, BO

Then we tested the bits in variable B0 using the predefined Bit0 and Bitl
variables in the If.. Then commands to see if a switch was closed on either line.
If it was, the program jumped to the proper subroutine.

Programming challenge

Rewrite Program 4.1 using the Peek command instead of the Button com-
mand. The solution is in the Appendix.

Basic Input and Output Commands

In our programs, we directly wrote (using the Poke command) to the PIC
microcontroller TRIS registers (A or B) to set various pins to be either input or
output lines. By Pokeing the TRIS register, we are able to configure the eight
pins to port B at one time. In addition, and more important, we can configure
the five open pins on port A as well.

However, the PICBasic compiler has two Basic commands for making pins
either input or output lines. These commands are Input and Output.
Unfortunately, these two commands work only on port B pins.

Input Pin

This command makes the specified pin an input line. Only the pin number
itself, i.e., 0 to 7, is specified (e.g., not Pin0).
Sample usage:

Input 2 ‘Makes pin 2 an input line.

The opposite of the input command is the output command,

Cutpukt Fin

This command makes the specified pin an output line. Only the pin number
itself, i.e., 0 to 7, is specified (e.g., not Pin0).
Sample usage:

Cutput 0 ‘Makes pin 0 an oubtput line.

Okay, we have established a foundation on PIC microcontrollers that allows
us to work on applications. But before we do, I want to offer a few tips that will
make programming easier.

66 Chapter Five

Branch

Button

Pulsin Measure pulse width (10-ps resolution).

Pulaout Generate pulse (10-ps resolution).

Pwm Output pulse-width-modulated signal from pin.

Random Generate pseudorandom number.

Read Read byte from on-chip EEPROM.

Return Return from subroutine.

Reverse Reverse I/0 status of pin; input becomes output and vice versa.

Serin Asynchronous serial input (8N1).

Serout Asynchronous serial output (8IN1).

Sleep Power-down processor (1-s rezolution).
sound Generate tone or white noise on specifie pin.

Toggle Make specified pin an output and toggle state.
Write Write byte to on-chip EEPROM.

Branch Offset, (Labeld, Labell,...,LabelX)

Uses Offset (byte variable) to index into the list of labels. Execution continues

at the indexed label according to the Offset value. For example, if Offset is 0, pro-
gram execution continues at the first label specified (Label®) in the list. If the
Offset value is 1, then execution continues at the second label in the list.

Eranch B3, (labell, lakel2, lakel3]

If B& = 0, then program execution jumps to labell.
If B8 = 1, then program execution jumps to label2.
If B8 = 2, then program execution jumps to label3.

Button Fin, Down, Delay, Rate, Var, Action, Label

Fin Pin number (0 to 7), port B pins only.

Down State of pin when button is pressed (0 or 1).

Delay Delay before auto-repeat begins, 0 to 255,

Rate Auto-repeat rate, 0 to 255

Var Byte-sized variable needed for delay repeat. Should be initialized to 0
before use.

Action State of pin to perform Goto (0 if not pressed, 1 if pressed).
Label Point at which program execution continues if Action is true.

Figure 5.1 shows the schematic for two styles of switches that may be used
with this command.

68 Chapter Five

For..Next

Gosub

This command terminates program execution and enters low-power mode by
executing continuous Nap commands.

For Index = Start to Stop (Step (-1 Ing)
Body
Next Indax

Index is the variable holding the initial value Start.

Start is the initial value of the variable. Step is the value of the increment.
If no Step value is specified, it is incremented by 1 each time a corresponding
Next statement is encountered. The Step increment value may be positive or
negative. If Step and Inc are eliminated, the step defaults to positive 1.

Stop is the final value. When Index = Stop, the corresponding Next state-
ment stops looping back te For, and execution continues with the next
PICBasic statement.

Body is Basic statements that are executed each time through the loop. Body
is optional and may be eliminated, as is the case in time-delay loops.

For BO = 0 to 127
Poke PortE, BO "Place BO wvalue at port te light LEDs
Hext BO 'Next BO walue

This program snippet is from Chap. 4.

Gosub Label

Program execution jumps to statements beginning at Label. A Return state-
ment must be used at the end of the Label subroutine to return program exe-
cution to the statement following the Gosub statement.

(Gosub statements may be nested. However, nesting should be restricted to
no more than four levels.

Gozub wink "Execute subroubtine named wink
‘Frogram execution returns to here
'Other programming goes here

wink: "Label wink

High 0 'Bringing pin 0 high lights LED
Pause 500 "Wait 1/2 =

Low 0 '"Bringing pin 0 low turns off LED
REeturn 'Return to main routine

Gosub nesting

Nesting 1s the term used to describe a second Gosub routine called from with-
in a previous Gosub routine. Because of memory limitations Gosubs can only
be nested to a maximum of four levels deep.

Goto

High

12cin

PICBasic Language Reference 69

Gote Label

Program execution jumps to statements beginning at Label.

Goto loop 'Frogram execution jump to statements beginning at
"loop.
loop:
For b0 = 1 to 10
Paoke portB, bo
MNexk

High Fin

This command makes the specified pin an output pin and brings it high (+5
V). Only the pin number itself, 0 to 7, is specified in the command. This com-
mand works only on port B pins.

High 2 "Make pin 2 (REZ) an cutput pin and bring it high
Vl+E W
Izein Contrel, Address, Var |, Varl

This command allows one to read information from serial EEPROMs using a
standard two-wire I°C interface. The second (, Var) shown in the command is
used only for 16-bit information. Information stored in a serial EEPROM
is nonvolatile, meaning that when the power is turned off, the information is
maintained.

Here is a list of compatible serial EEPROMs.

Device Capacity Control Address size
24LC01B 128 hytes 0101 O B bits
24L.C02B 256 bytes 0101 O B bits
24L.C04B 512 bytes 0101 0xxhb & bits
24L.CO8E 1K bytes 01010xbb 8 bits
24LC16B 2K bytes 01010bkE B bits
24LC32B 4K bytes 11010ddd 16 hits
24LCB5 5K bytes 11010ddd 16 hits

bbb = block selects bits (each bloclk = 256 bytes).
ddd = device selects hits.
= don't care.

The high-order bit of the Control byte is a flag that indicates whether the
address being sent is 8 or 16 bits. If the flag is low (0), then the address is

PICBasic Language Reference 71

A5y TS
L
4 U1 Rl €3
13 whiln) oy I
L {rET .
'T_ RES MILR" &I}IH
. -t lppe z
;E‘%K SRBT psCi—E it
] " i 3_ EB; 15 = .
7RBE nsCa—= -y
- IRghsnT
LA Yoo] —
Al Rads [OCK]
3] A < {pas
t [¥as . I'_ Rz
7wWP oo Hra
SOA L ipun
S S VS5
— E¥L(DIB 3 P LU L&F Y

Figure 5.2 Serial EEPROM interface.

Label. If the condition is not true, program execution continues at the
next line.

The Then in the If..Then is essentially a Goto. Another statement cannot be
placed after the Then; what follows must be a label.

The command compares variables to constants or to other variables. If only
one variable is used in a comparison, it must be placed on the left. All com-
parisons are unsigned.

The following is a list of valid comparisons:

= Equal to
= Greater than
= Less than

<= Not equal to

A
Il

Less than or equal to
== (Greater than or equal to

If B8 == 25 Then loop
If the value in variable B8 is less than or equal to 25, then the program jumps
to loop.

Binary logic comparisons

The If.Then command may also be used with two binary logic comparisons,
AND and OR.

Input

Input Fin

72 Chapter Five

Let

This command makes the specified pin an input pin. Only the pin number
itself, 0 to 7, is specified in the command. The command works only on port
B pins.

Input 1 ‘Make pin 1 {EB1l} an input.

Let Var = Value
Optional:
Where Value = OF Value

Let assigns a value to a variable.
The value assigned may be

1. A constant (Let B1 = 27)
2. The value of another variable (Let B1 = B2)
3. The result of one or more binary (math) operations

The operations are performed strictly left to right and all eperations are per-
formed with 16-bit precision.
Valid operations are

+ Addition

- Subtraction

'+' Multiplication

i Most significant bit of multiplication
i Division

M Remainder

MIN Minimuam
MAX Maximum

& Bitwise AND
Bitwize OR
" Bitwise XOR

&/ Bitwise AND NOT
o f Bitwise OR NOT
g Bitwizse XOR NOT

Sample operations:

Let B1
Let Bl

34 *Agsign variable Bl the walue of 34 {"Let" iz optionall
Bo [/ 2 *Agsign variable Bl te BO's wvalue shifted right one bit
‘{divided by Z}

When two 16-bit numbers are multiplied, the result used is the lower 16 bits
of the 32-bit answer.

Lookdown

Lookup

PICBasic Language Reference 73

Let W1 = WO * 25& ‘Multiply value held in W0 by 256 and
‘place result in W1 (lower 16 bits)

If you require the higher-order 16 bits, use the following command:

Let Wl = WO ** 354 "Multiply wvalue held in WO by 258 and
'place result in W1l (upper 16 bitcs)

Bitwise operations use standard binary logic and 8-bit bytes.

El = %01100000
Bz = %00100010
Let B2 = B2 & Bl

The resultant B2 will be 200100000,

Lookdown Swvalue, (cvalueld, cvaluel,...,cvalueN), rvalue

where svalue = search value
cwvalue¥ = constant values
rvalue = result value

The Lookdown command searches through a list of constants (cvalue0, cval-
uel, ete.), comparing each value in the list to the search value (Svalue). If a
match is found, the physical number of the term (index number) in the list 1s
stored in the roalue (result value) variable.

A simple example will straighten out any confusion.

Lookdewn &, (™16, 34, 21, 13, 7 8 ©, 10, 5 2"}, EO

The command searches through the list of constants and stores the item num-
ber in BO. In this example, BO will hold the result of 8. (Lookdown hegins
counting from 0, not 1.) Commas are used to delineate multiple-digit numbers.

The constant list may be a mixture of numeric and string constants. Each
character in a string is treated as a separate constant with the character’s
ASCII value.

If the search value is not in the lookdown list, no action is taken and the val-
ue of rvalue remains unchanged.

ASCII values as well as numeric values may be searched.

Berin 1, N2400,B0 "Get hexadecimal character from pin 1 serially
Lookdown BO, ("01234567H3ABCDEF"), Bl
"Convert hexadecimal character in BO to
"decimal walue in Bl1.
Sergut 0,HN2400, (#B1) 'Send decimal walue to pin 0 serially.

Lookup Index, {cvalued, ecvalwel, ..., (evalueN), Value

74 Chapter Five

Low

Nap

The Lookup command is used to retrieve values from a table of constants
(cvaluel, cvaluel, etc.). The retrieved value is stored in the Value variable. If
the index is zero, Value is set to the value of cvalue®. If the index is set to 1,
then Value is set to the value of cvaluel, and so on.

If the index number is greater than the number of constants available to
read, no action is taken and Value remains unchanged.

The constant may be numbers or string constants. Each character in a
string is treated as a separate constant equal to the character’s ASCII
value.

For BO = 0 to 5 ‘Set up For.. Mext loosp*poi0X
Lookup BO, (“Hello!") ‘Get character number BO from
‘string and place in wvariable EL
Serout 0,Nz2400, (B1l) *Send character in Bl oubt on pin 0
‘serially.
Mexkt EO ‘Do next character.
Low Fin

This command makes the specified pin an output pin and brings it low (0 V).
Only the pin number itself, 0 to 7, is specified in the command. The command
works only on port B pins.

Low 0 'Make pin 0 {RBE0) an output pin and bring it low
iow)

Map Period

This command places the PIC microcontroller in low-power mode for varying
short periods of time. During a Nap, power consumption is reduced to a mini-
mum. The following table of times is approximate, because the timing cycle is
derived from the on-board watchdog timer, which is R/C' driven and varies
from chip to chip {and with temperature).

Period Delay (approximate)

18 ms
36 ms
T2 ms=
144 ms
288 ms

o B R

576 ms
1.15 5
238

=]

Output

Pause

Peek

PICBasic Language Reference 75

Map 7 ‘Low-power pause for 2.3 =

The watchdog timer must be enabled in the EPIC software (see EPIC
Software) for Nap and Sleep commands to function. If Nap and Sleep com-
mands are not used, the watchdog timer may be disabled.

output Fim

This command makes the specified pin an output pin. Only the pin number
itself, 0 to 7, is specified in the command. The command works only on port B
pins.

output 5 *Make pin 5 (RBS) an output.

FPause Period

This command provides a pause in program execution for the Period in mil-
liseconds. Period is a 16-bit number that can hold a maximum value of 65,535.
In milliseconds, that works out to just over one minute (60,000 ms). Unlike the
other delay functions, Nap and Sleep, the Pause command does not put the
microcontroller into a low-power mode. This has both an advantage and a dis-
advantage. The disadvantage is that Pause consumes more power; the advan-
tage is that the clock is more accurate.

Pause 250 ‘Delay for 1/4 =

Peek Address, Variable

The Peek command reads any of the microcontroller’s registers at the Address
specified and copies the result in Var. This command may be used to read spe-
cial registers such as A/D converters and additional I/O ports.

Peek reads the entire 8 bits of the register at once. If extensive bit manipu-
lation is needed, the user may store the results of the Peek command in either
B0 or B1. These two bytes may be also be used as bit variables Bit0 to Bitl5,
and extensive bit manipulation is easily performed. Byte B0 is equivalent to
Bit0 to Bit7, and byte B1 is equivalent to Bit8 to Bitl5.

The following example shows how one can check bit status. It assumes that
the five open pins on port A have been configured as input pins.

loop:
Feel Porta, BO ‘*Read port & pins and copy result
‘into byte EBO.

If Bitd = 1 Then routel *If RA0 is high, jump te routel
If Bitl = 1 Then routez *If RAl is high, jump to roukbe2
If Bit2 = 1 Then routed *If RAZ is high, jump to route3l

76 Chapter Five

Poke

Pot

If Biti = 0 Then routel *If RAd4 is low, jump to routel
If Bit4 = 0 Then routel *If RAS is low, jump to routel
Goto loop

The example shows that bits may be checked for high or low status. The
Peek command also works with pins that are configured as outputs. When
peeked, the resultant shows the binary value that has been poked in the
port register.

Poke Address, Variable

The Poke command can write to any of the microcontroller’s registers at the
Address specified and copy the value in Var to the register. This command may
be used to write to special registers such as A/D converters and additional I/O
ports.

Poke writes an entire byte (8 bits) to the register at once.

Poke 134,0 "Write binary 0 to DDR for port B, making all pins
‘output lines.

Pot Pin, Scale, Var

This command reads a potentiometer or other resistive transducer on the Pin
specified. The programmer may choose any of the port B pins, 0 to 7, to use
with this command.

Resistance is measured by timing the discharge of a capacitor through
the resistor, usually 5 to 50 k{). Scale is used to adjust varying R/C con-
stants. For large R/C constants, set Scale to 1. For small R/C constants, set
Scale to its maximum value of 255. Ideally, if Scale is set correctly, the vari-
able Var will be set to zero at minimum resistance and to 255 at maximum
resistance.

Scale must be determined experimentally. Set the device or transducer to
measure at maximum resistance and read it with Scale set to 255. Under
these conditions, Var will produce an approximate value for Scale.

There are many resistive-type transducers that may be read using the Pot
command. The important thing that distinguishes this command from an ana-
log-to-digital (A/D) converter is that a converter measures voltage, not resis-
tance. [Although the voltage drop across the converter may seem to be similar
to the Pot diagram (Fig. 5.3), it is not.]

Pot 3,255,B0 ‘Head potentiometer on pin 3 cto
‘determine scale.
Berout 0,MN2400, {(#BO) *Send pot values out on pin 0

‘garially.

78 Chapter Five

Pwm

Random

As a result, if the initial state of the pin is low, Pulsout outputs a positive
pulse. On the other hand, if the initial state of the pin is high (+5 V),
Pulsout outputs a negative (0 V) pulse. This command may use any port B
pin from 0 to 7. The pin used is automatically made into an output pin.

Low & *Set pin & {RBE) to an output and bring it
*low
Pulsout &,1000 ‘Send a positive pulse 10,000 ps (10

‘ms} long out on pin & (RB&) .

Pwm Fin, Duty, Cycle

This command outputs a pulse-width-modulation (PWM) train on the Pin
specified. Each eycle of PWM consists of 256 steps. The Duty cvele for
each PWM ranges from 0 (0 percent) to 255 (100 percent). This PWM
cycle is repeated Cyele times. This command may use any port B pin from
0to 7.

The pin is made an output just prior to pulse generation and reverts to an
input after generation stops. This allows a simple R/C circuit to be used as a
simple I/A converter.

The test circuit for this command is shown in Fig. 5.4.

Pwm 7,126,155 ‘Send a 50 percent duty coycele PWM signal oub on
‘pin 7 {RB7) for 155 cycles.

Note: If the PWM command is used to control a high-current device, the out-
put signal should be buffered.

Randem Var

This command generates a pseudo-random number in Var. The variable Var
must be a 16-bit variable. Random numbers range from 1 to 65,635 (zero is not
produced).

Pin £l Anolog Out

qf———+h:—————

Figure 5.4 PWDM test circuit.

Read

Return

Reverse

Serin

PICBasic Language Reference 79

Random W2 "Generate random number in W2

Read Address, Var

This command reads the on-chip EEPROM (if available) at the specified
Address; the resultant byte at the address is copied into the Var variable. If
Address is 255, Var returns with the number of EEPROM bytes available. This
instruction may be used only with microcontrollers that contain on-chip EEP-
ROM, such as the 16F84.

Read 5, BO ‘Read EEFRCM location number 5 and copy
‘inta BO.

Return

This command causes program execution to return from a called Gosub
command.

Gosub sendl ‘Jump to subroutine labeled sendl
‘Program returns here

sendl : ‘Subroutine sendl beging
Berout 0,N2400, {"Hello!"] *Send “Hello!* out on pin 0 serially
Return ‘Return to main program

Reverse Pin

This command reverses the status of the Pin specified. If Pin is an output, it
is reversed to an input, and vice versa. Only the pin number itself, 0 to 7, is
specified in the command. The command works only on port B pins.

Cutput 3 *Make pin 3 (RB3} an output pin
Reverse 3 *Change pin 3 (RB3) to an input pin
Serin Pin, Mode, [(Qual { ,Qual }), 1 Item { ,Item }

This command allows the microcontroller to receive serial data on the Pin speci-
fied. The data are received in standard asynchronous mode using 8 data bits, no
parity bit, and 1 stop bit. Mode sets the baud rate and TTL polarity as follows:

80 Chapter Five

Triggers

Symbol Baud rate Polarity
T2400 2400 TTL true
T1200 1200 TTL true
T9600 9600 TTL true
Ta00 300 TTL true
N2400 2400 TTL inverted
N1200 1200 TTL inverted
Na9a00 9600 TTL inverted
N300 300 TTL inverted

The operation of this command is shown in Fig. 5.5.

‘Convert decimal number to hexadecimal

Loop:

Serin 1, N2400, BOD ‘Raceive decimal
‘number on pin 1, 2400
‘Baud; store in EO.

Lookup EQ, ("012345687H9ABCLDEFY), Bl ‘Use BO as index
‘munber and look up
*hex equivalent.

Serout 0, N2400, (B1, 13, 10} ‘Transmitc hex
‘equivalent out on pin 0
‘serially with carriage
‘return (13) and line
‘feed (10).

Goto Loop ‘Do it again.

The microcontroller can be configured to ignore all serial data until a particu-
lar byte or sequence of bytes is received. This byte or sequence of bytes is
called a qualifier and is enclosed within parentheses. If there is more than one
byte in a qualifier, Serin must receive these bytes in exact order hefore receiv-
ing data. If a byte does not match the next byte in a qualifving sequence, the
qualification process resets. If this happens, the next byte received is com-
pared to the first item in the qualification sequence. Once the qualification is
met, Serin begins receiving data.

e UBa DOEZ5
=i ek RG-737 TX Pir 3 Fie 2

RS-732 GRO Fir S Fin 7

Figure 5.5 Serial in from RS-232.

Serout

PICBasic Language Reference 81

The qualifier can be a constant, variable, or string. Each character of a
string is treated as an individual qualifier.

Eerin 1, Wz2400, {(™A"), EO

Wait until the character “A” is received serially on pin 1, then put the next
character in BO.

Sercut FPin, Mode, Item {, Item)

This command allows the microcontroller to transmit serial data on the Pin
specified. The data are transmitted in standard asynchronous mode using 8
data bits, no parity bit, and 1 stop bit. Mode sets the baud rate and TTL polar-
ity as follows:

Symbol Baud rate Polarity
T2400 2400 TTL true
T1200 1200 TTL true
TO600 2600 TTL true
T300 200 TTL true
N2400 2400 TTL inverted
N1200 1200 TTL inverted
NOG00 26040 TTL inverted
Na00 200 TTL inverted
OT2400 2400 Open drain
OT1200 1204 Open drain
OT9600 9600 Open drain
OTa00 300 Open drain
ON2400 2400 Open source
ON1200 1200 Open source
ON9600 9600 Open source
ON300 3040 Open source

Serout supports three types of data, which may be mixed and matched freely
within a single Serout statement. A description of the data types follows:

1. A string constant is transmitted as a literal string of characters.

2. A numeric value (either a variable or a constant) will transmit the corre-
sponding ASCII character. This procedure is often used to transmit a car-
riage return (13) and a line feed (10).

3. A numeric value preceded by a pound sign (#) will transmit as the ASCII
representation of its decimal value. For instance, if W0 = 123, then #W0 (or
#123) will transmit as “1”, “2”, “3".

82 Chapter Five

Sleep

The operation of this command is shown in Fig. 5.6.

Serocut 0,N2400, {#B0,10] ‘Send the ASCII value of B0 followed by
‘a line feed ocut pin 0 serially.

Note: Single-chip RS5-232-level converters are common and inexpensive
(Maxim’s MAX232) and should be implemented when needed or to ensure
proper RS-232 communication.

Eleep Period

This command places the microcontroller in low-power mode for Period, spec-
ified in seconds. Since Period is a 16-bit number, delays of up to 65,535 s (a
little over 18 h) are possible. Sleep uses the watchdog timer (WDT) on the
microcontroller, which has a resolution of 2.3 s (see Nap command).

Eleap 120 'Sleep (low-power mode) for 2 min.

Additional sleep notes

It has been determined that Sleep may not work properly on all PICMicros.
During Sleep calibration, the PICMicro is reset. Different devices respond in
different ways to this reset. Upon reset, many registers may be altered.
Notably the TRIS registers set all the port pins to inputs.

However the TRIS register for port B is automatically saved and restored by
the Sleep routine. Any other port directions must be reset by the user program
after Sleep. Other registers may also be affected. See the data sheets for a par-
ticular part for this information.

To get around potential problems, an uncalibrated version of Sleep has been
added. This version does not cause a device reset, so it has no effect on any of
the internal registers. All the registers, including port direction, remain
unchanged during and after a Sleep instruction.

However, actual Sleep times will no longer be as accurate and will vary,
depending on device particulars and temperature. To enable the uncalibrated
version of Sleep, add the following lines to a PBC program:

o £B9 CEes
Pn o RS-232 =X Fin 2 Fin 3

ES-c3g SMD Fin 5 =i 7

Figure 5.6 Serial out to R5-232.

Sound

Toggle

PICBasic Language Reference 83

asm
ELEEFUNCAL = 1
endasm

The PICBasic Compiler software is packaged with a PICMicro macro assem-
bler (PM.exe). While we will not write any in-line assembly code, it is available
to those who have some familiarity with assembly language and PBC library
routines. The next book will mix assembly and Basic language and use the
PICMicro macro assembler.

Sound Pin, [Note, Duration {, Note, Duration})}

This command generates tones and/or white noise on the specified Pin. Note 0
is silence, notes 1 to 127 are tones, and notes 128 to 255 are white noise. Tones
and white noises are in ascending order. Duration is a numeric variable from 0
to 255 that determines how long the specified note is played. Each increment
in duration is equivalent to approximately 12 ms. This command may use any
port B pin from 0 to 7.

The waveform output is TTL level square waves. A small speaker and capac-
itor can be driven directly from the microcontroller pin (see Fig. 5.7). Piezo
speakers may be driven directly.

Sound 4, (100,10,50,10) ‘Flay two notes consecutively on pin 4
‘{RE4) .

Toggle Fin

This command inverts the state of the specified Pin. The pin specified is auto-
matically made into an output pin. This command may use any port B pin
from 0 to 7.

High 1 *Make pin 1 (RB1} high

Toggle 1 *Invert state of pin 1 and bring it low
ci ;;fff#
-JuF

Fin +5f

[}

Figure 5.7 Simple sound out circuit.

84 Chapter Five

Write

Write Address, Value

This command writes the Value to the on-chip EEPROM (if available) at the
specified Address. This instruction may be used only with microcontrollers
that contain on-chip EEPROM, such as the 16F84.

Wrice 5,BO * Write the value in B0 to EEPROM address 5

86 Chapter Six

In the XT, LP, or HS mode, a erystal or ceramic resonator is connected to the
OCS1/CLKIN and OSC2/CLKOUT pins to establish oscillation (see Fig. 6.1).
For crystals 2.0 to 10.0 MHz, the recommended capacitance for C1 and C2 is
in the range of 15 to 33 pF. Crystals provide accurate timing to within +50 ppm
(parts per million). For a 4-MHz crystal, this works out to +200 Hz.

A ceramic resonator with built-in capacitors is a three-terminal device that
is connected as shown in Fig. 6.2. The timing accuracy of resonators is
approximately +0.5 percent. For a 4-MHz resonator, this works out to
+20,000 Hz.

RC oscillators may be implemented with a resistor and a capacitor (see Fig.
6.3). While additional cost saving is provided, applications using RC mode
must be insensitive to timing. In other words, it would be hard to establish RS-
232 serial communication using an RC oscillator because of the variance in
component tolerances.

, 0SC1

[L XA picrersa

C2 O5C2

Figure 6.1 Crystal connected to PIC 16F84.

0501

osc2 PIC16F84

|||—

(5410 B

O
w0
Q)
—

Figure 6.2 Diagram of ceramic resonator with built-in capacitors.

90 Chapter Six

PIC Harvard Architecture

PIC microcontrollers use a Harvard architecture, which means that the mem-
ory is divided into program memory and data memory. The advantage to this
architecture is that both memories can be accessed during the same clock
instruction; this makes it faster than the standard von Neumann architecture,
which uses a single memory for program and data. Figure 6.6 is a block dia-
gram of the 16F84.

User program memory space extends from 0x0000h to 0x03FFh (0 to 1023
decimal). Accessing a memory space above 03FFh will cause a wraparound to
the beginning of the memory space.

Fila File
Address Address
00h Indirect addr. Indiract addr, a0h
h THMRO OPTION-REG 81h
02h PCL PCL B2h
03h STATUS STATUS B3h
Odh FSH FSR 84dh
05h PORTA TRISA 85h
DEh PORTH TRISEB d6h
07h 87h
0ah EEDATA EECON1 88hH
U%h EEADR EECONZ2 89h
04Ah PCLATH FCLATH g8ah
JBh INTCON iINTCON BBh
ach 8Ch

[iTH
Mapped
gs':ﬁr :Ie (accesses)
Registars in Bank 0
{SRAM}
4Fh Cfh
50h Doh
TFh FFh
Bankq Bank 1

I_| Unimplemented Data
memoary location; read as {

Figure 6.7 Register file map 16F84.

94 Chapter Seven

Index). The SPO-256 (see Fig. 7.1) can generate 59 allophones (the electronic
equivalent of English phonemes) plus five pauses (no sound) of various lengths.
An allophone table is provided in Table 7.1.

By concatenating (adding together) allophones, we construct words and sen-
tences. This may appear difficult at first, but it is not. Once vou get the hang
of it, yvou can turn out complete sentences in a minute or so.

A Little on Linguistics

When we program words for the SPO-256 speech chip, we string together the allo-
phones shown in Table 7.1. Words and sentences must end with a pause (silence);
if they do not, the last allophone sent to the chip will drone on continuously.

To pronounce the word cookie, use the following allophones: cookie = KK3,
UH, KK1, IY, PA2. The decimal addresses for the allophones are sent to the
SP0-256; this works out to the following numbers: 8, 30, 42, 19, 1.

The optional data sheet for the SP0O-256 has an allophone word list con-
taining two hundred or so commonly used words (numbers, months, days of
the week, ete.). If the word you need isn't on the list, vou can make the word
up yourself, using the allophone list.

The first thing to keep in mind when creating an allophone list for any par-
ticular word is that there is not a one-to-one correspondence between sounds
and letters. You need to spell the words phonetically, using the allophone table.
For instance, CAT becomes KAT, which in allophones becomes KK1, EY, TT1,

vessC 1 -~ 283 08C2
ResetC” 2 27 1 O8C 1
Rom Disable 3 26 J Rom Clock
cil 4 25 "1 SBY RESET

car 5 U 24 1 pigital out
cal 6 -U 23 |1V,
vdd! 7 o 22 | Test

SBYLE N 21J5Ef|l‘l
LRQL 9 m 20 _| ALD

AB L 10 m 19 | SE

A7TC 11 18 T At
Ser OutC_ 12 17 1 A2
A6 L 13 16 7 A3
As5C 14 15 7 A4

Figure 7.1 Pinout of the SPO-256

96 Chapter Seven

TABLET.1 Allophones (Continued)

Decimal address Allophone Sample word Duration (ms)

36 Gzl Gotten 80

7 SH Sharp 160
38 ZH Azure 190
39 REZ2 Train 120
40 FF Forward 150
41 EEK2 Sky 190
42 KK1 Came 160
43 ZZ Zolu 210
44 NG Anchor 220
45 LL Lamb 110
46 Ww Wood 180
47 XR Pair 360
48 WH Whine 200
49 ¥Y1 Yes 130
a0 CH Chump 190
51 EER1 Tire 160
52 ERZ2 Tire 200
a3 oW Beau 240
54 DH2 They 240
55 85 Best 90
a6 NNZ2 Not 190
av HH2 Noe 180
a8 OR Pore 330
59 AR Arm 290
&0 YR Clear 350
61 GG2 Gruide 40
62 EL Paddle 190
63 EEBZ2 Boy 50

PA1l. The decimal addresses for the allophones are 42, 20, 17, 1. Those are the
numbers we plug into our program to get it to speak. When the word is pro-
grammed in, listen to it as it plays through the SP0-256 and decide whether
we need to improve upon it. In our cat example, you will find that the KK3
allophone makes the word sound better.

The placement of a speech sound within a word can change its pronuncia-
tion. For instance, look at the two d's in the word depend. The d's are pro-
nounced differently. The DD2 allophone will sound correct in the first d
position, and the DD1 allophone will sound correct in the second d position.

98 Chapter Seven

Mode Select

The Circuit

There are two modes available for accessing the chip. Mode 0 (SE = 0) will
latch an address whenever any of the address pins makes a low-to-high tran-
sition. You can think of this as an asynchronous mode.

Mode 1 (SE = 1) latches an address using the ALD pin. When the ALD pin
is pulsed low, any address on the lines is latched in. To ensure proper syn-
chronization, there are two pins that can tell the microcontroller when the
SPO-256 is ready to have the next allophone address loaded. We will use one
of those pins, called the SBY pin. The SBY goes high while the chip 1s enunci-
ating the allophone. As soon as the allophone is completed, the SBY line goes
low. This signals the microprocessor to load the next allophone address on
lines Al to A6 and pulse the ALD line low.

The circuit is shown in Fig. 7.2. The circuit uses two switches to trigger
speech. It is important to realize that the switches provide digital logic signals
to the port A pins and, further, that any circuit that can output binary 0s and
1s can be used to trigger the circuit to speak. In other words, you don’t need to
use switches.

Looking at the schematic, we can see that the RAO and RA1 lines are nor-
mally kept high (+5 V), binary 1, through the 10-k(} resistor. When a switch
is closed, it connects the pin to ground and the line is brought down to (ground}
binary 0. I could have arranged the logic signals to the pin(s) to be the oppo-
site. This would change a few commands in the program, but functionally it
would do the same thing. You choose the logic signal to use based upon the cir-
cuit you are working with.

The other important thing to know is that the five open lines on port A may
be used to trigger up to 31 different speech announcements. The five pins form
a 5-bit binary number that can be read with the Peek command. This is hinted
at in the program. We use only two of the five available lines, RAO and RA1, to
jump to three different words. With a 2-bit number, we have four possible com-
binations.

Logic status

RAD EAl Action
1 1 None—normal state
1 0 Speak word 1
0 1 Speak word 2
0 0 Speak word 3

In a similar fashion, a 3-bit number allows 8 unique combinations, a 4-bit
number allows 16, and a 5-bit number allows 31.

100 Chapter Seven

In the program, word 3 is actually a sentence. This simply demonstrates

that you are not limited to using single words.

The Program

"REM SPO-256 talker
Eymbol TRISE = 134
Eymbol portE = &
Symbkol portA = 5
"Initialize ports

Poke TRISE,128

“Check line status
start:

Pause 200

Peel porta,bd

If b0 = 0 Then three
If bitd = 0 Then hello
If Birl = 0 Then world
Gota start

*Say word hello

hello:

For b = 0 to §

" Bet RB7T as input, set RE0 to RBé as outputs

* Could be switches or could be TTL logic signals

" Give a human a chance to press a button{s)
* Read Port A

"Check both lines first (normally b0 = 3]
"Check line 0 / alternative command: If bo
“Check line 1 / alternative command: If bd =

*It's nobt just a word, it's a routine

‘Loop using number of allophones

lookup b3, {27,7,45,15,53,1) , b4 ‘Decimal addresses of allophones

Gosub speak
Hext b3

Goto start

*Say word world
world:

For bl = 0 to 4

‘Speak subroutine
*Get next allophone
‘Do it again from the beginning

‘Procedure similar teo hellao

lockup b3, {46,58,62,21,1),b4

Gosub speak
MNext L3
Goto start

[

‘Bay sentence ‘See you next Tuesday.’

threea:
For bl = 0 te 19

‘Procedure similar to Hella

lockup b3, {55,55,19,1,4%,22,1,11,7,42,55,13,2,13,31,43,2,33,20,1) b4

Gosub spealk
MNext b3

Goto start
speak :

Foke portE, b4
Pause 1

High &

wait:

FPeel portE,bd
If bit7 = 0 Then wait
Return

Program Features

Usually each program has a little something different from all the other pro-

'Subroutine to speak allophones

"Set up allophone address and bring ALD low
"Pause 1 ma for everything to stabilize
'Bring ALD high / alternative: Poke portB, &4

"Look abt port B
"Check SBY line {0 = talking, 1 = finished)
"Get next allophone

grams we looked at so far, and this program is no exception.

Speech Synthesizer 101

Starting from the top, notice how we are using the Peek command:

Peek portd, bi

First, we are peeking port A, where our two switches are connected, and placing
the result in variable b0, If neither switch is pressed, there is a logic high (+5 V)
on pins RAO and RA1. In binary, this port looks like XXX00011, where each X
means that the line (pin) is not available for use (read these pins as 0). Following
the Xs are the binary 0s equal to pins RA4, RA3, and RA2, and finally the bina-
ry 1s equal to pins RA1 and RAO. The decimal equivalent of this binary number
is 3. If vou have forgotten how to read binary numbers, look back to Table 3.1.

The program interprets this information two ways. First, it looks at the
number itself:

If b0 = 0 Then three

The only way b0 can be zero is if both switches are closed simultaneously. In
that case, the program jumps to the routine labeled three. Otherwise, the pro-
gram continues to the next line.

If bitd = © Then hells

In this line, we are testing the bit 0 value in the b0 byte. This operation can
be performed only on bytes being held in the b0 and b1l variables. In general,
try to leave these two variables alone and use them for bit access. In the event
that these variables are not available, there are alternative commands that
you can use, such as those given in the comments as alternative commands.

If bito = 0 Then hello "Check line 0 / alcternative command: If bd = 2

The alternative command may be used on any variable (b7, for instance). I
used shorthand for the alternative command to make it fit on one line; the full
command would look like this:

If b0 = 2 Then hello

This checks the number held in the variable. If bit 1 is high, the value of b0
is 2. The disadvantage is that you must keep the status of the other bits in
mind when vou are checking status in this way.

The Lookup commands are reading numbers rather than ASCII codes. To
read numbers, leave out the quotation marks after the parenthesis. ASCII
codes use the quotation marks, as in “H.”

In the speak subroutine near the end of the program, we use the Peek com-
mand again, this time to look at the one input line on port B, the RB7 line.
Notice, however, that we peek the entire port B (8 bits}, even though there is
only one input line. The I/O status of any line doesn’t affect the usability of the
Peek command. When we peek an output line (or port), the result shows us the
status of both the output line(s) and the input lines. After we peek port B, we
are checking the status of the one input line RB7 using the bit7 command.

104 Chapter Eight

Qutput First

Basic Serial

To create the output lines, we are going to use a serial-to-parallel converter
chip, the T4LS164 (see Fig. 8.1). This chip reads 8-bit serial data on pins 1 and
2 and outputs the data on eight parallel lines (QA to QH).

If you remember from the command description of the Basic language
{Chap. 5), we have built-in Serin (serial in) and Serout (serial out) commands.
Unfortunately, we cannot use these Basic commands because their serial for-
mat uses stop and start bits. Start and stop bits are necessary in asynchronous
(without a clock) communication.

The T4LS5164 converter chips use a clock line and do not use or require stop
and start bits. Since there is no way to remove these bits from the standard
serial Basic commands, we need to program our own serial communication.

Synchronous communication requires a clocking pulse. The clocking pulse
determines when the information on the serial line is valid. For the 74LS164,
it is on the low-to-high transition of the clock pulse that information (value 0
or 1) on the serial line is valid.

Serial data are transmitted most significant bit (bit 7) first. Since we are writ-
ing the serial routine, we could change this and send out the least significant
bit (bit 0) first if we wanted, but we will not; we will stay with this convention.

Tl L
FUNCTICON TABLE 1 14
_ | M Woo b—
Outputs 2 -“I

Clock| A | B | GAGB .. GH s B T
X [X[X |L L .. i ¥ | aa r aa 12
L (X |X | Qa Qb..GQh 4 - m o LM
* |H |H|H Qa.. Qg * lac w— ae |
"L | X|L Qa.. Qg * |lan o LRl *
T h B

T |%K L| L Ga.. Qg —{ GND cLK —

H = high level L = low ievel

X = irrelevant (any input including transitions)

= Transition from low to high

Qa ... Qg = the level after the most recent 1 transition
of the clock; indicates a one bit shift

Figure 8.1 Pinout T4L5164 serial-to-parallel chip.

Serial Communication and Creating 'O Lines 105

Figure 8.2 illustrates how the serial data are read by the 74L5164 and paral-
lel information outputted.

Line B (pin 2) on the 74L5164 is kept high. This allows us to use line A (pin
1) to send serial data along with the clocking pulse to pin 8. Notice that in the
function table in Fig. 8.1, lines A and B both need to be high for a high bit to
be outputted. We can set either line (A or B) high and use the other to trans-
mit serial data; it doesn’t matter which we choose.

Each low-to-high transition on the clocking line accepts another hit off line
A and outputs that bit to QA. All the existing bit information that is already
on the QA to QH lines is shifted 1 bit to the left. After eight transitions, a new
8-bit number is displayed on lines QA to QH of the T4LS164. In Fig. 8.2, we
are transmitting binary number 10000000 (decimal number 128). I chose this
number so that you can easily see how bit 7, the high bit, shifts down through
lines QA to QH.

What isn’t immediately evident is that as bit 7 shifts through lines QA to
QH, it brings each Qn line high. If we had an LED attached to each Qn line,
we could see bit 7 lighting each LED as it shifted with each transition. Only
after eight transitions will hit 7 be in the right position. So, after the first
seven transitions, as the serial number is shifting into the 74LS164 paral-
lel register, the number shown on the 8-bit parallel output will be incorrect.

B Pin2 |

A Pin 1

Binary nurmber 10000000
I 1 Decinval Member 128

Start Flnlaly

geek | [T LTI L L L

ai] i
QB I_l ’
oc [] ’

QE [] "
QF [] i
0G [1 ’
- [

Figure 8.2 Serial data in and parallel data out.

106 Chapter Eight

This bit shifting can create chaos in a digital circuit. If the circuit that is con-
nected to the 74LS164 parallel output cannot compensate for this bit shifting,
we can correct for this using a second chip, the 74LS373 data octal latch. You
will find that some circuits can compensate and others cannot.

Clear Pin

The 74L5164s have an optional pin that can help eliminate some of the havoc
caused by bit shifting. Pin 9 on the 74L5164 is the clear (CLR) pin. It is used
to clear whatever binary number exists on the parallel output and bring all
lines (QA to QH) low. The CLR pin is active low. For normal eperation, this pin
is kept high. To clear the number, bring the CLR pin low.

The Programs

Program 8.1

'Serial interface
"Slow program for wvisuwal testing interface
Eymbol TRISE = 134 "Assign Data Direction Register port B to 134

Symbol Fortk = & ‘Assign variable FortE the decimal wvalue of &
"Initialize port{s)

Poke TRISE,O 'Set port B as output port

start:

bo = 128 ‘Pubt number 128 {10000000) into b0
Gosub serial "Output the number serially to 74LS1e4
Pause 1000 "Wait 1 =

b0 = 255 ‘Fub number 255 (11111111} inte bO
Gosub serial "Output the number serially to 74LE1e4
Pause 1000 "Wait 1 =

bo =0 "Fubt number @ {00000000} into bO
Gosub serial "Output the number serially to 74LS1e4
Pause 1000 "Wait 1 =

Goto start Do it again

*Serial out routine

gerial:

pind = bit?7 "Bring pin 0 high or low, depending upon bit
Pulgeut 1, 1 '"Bring CLE line high, then low

Pause 100 "Optional delay-remove from program
pind = bits "Same as abowve

Pulseut 1, 1 'Same as above

Pause 100 'Optional delay-remove from program

pind = bits

Pulsout 1, 1

Pause 100 "Optional delay-remove from program
ping = bit4

Pulsout 1, 1

Pause 100 "Optional delay-remove from program
ping = bit3

Fulsout 1, 1

Pause 100 "Optional delay-remove from prograrm
pind = bitz

Fulsout 1, 1

FPause 100 "Opticnal delay-remowve from program
pind = bitl

FPulsout 1, 1

Program 8.2

Serial Communication and Creating O Lines 107

Fause 100 "Optional delay-remove from program
pind = bitcd

Pulzeut 1, 1

Fause 100 "Optional delay-remove from program
Low 1

Return

The schematic shown in Fig. 8.3 does not correct for the bit shifting. LEDs
are connected to the 74LS164 output lines. The program outputs binary
10000000 (decimal 128), waits a second, outputs 11111111 (decimal 255), waits
a second, and then outputs 00000000 (decimal 0).

The first serial program has optional Pause commands (Pause 100) after
each bit shift to allow vou to see how the number shifts into and through the
register. These Pause commands should be removed when you are using the
serial routine in an application. Remove the Pause command from the pro-
gram as shown in Program 8.2. Recompile the program and program it into
the 16F84. When the program is run, the numbers shift in so quickly that you
may not see the bit shifting occurring.

'Serial interface
Eymbol TRISE = 134 ‘'ARssign Data Direction Register port B bto 134

Eymbol PortBE = & 'hRzsign wvariable PortB the decimal value of &
‘Initialize port(s)

Poke TRISE, D ‘Set port B as oubtput port

sCart:

bo = 128 ‘Put number 128 (10000000} into bd

Gosub serial "Output the number serially to 74L51e4
Pause 1000 "Wait 1 =

bo = 255 *Put number 255 (11111111} into bad

Gosub serial *Output the number serially to 74L51e4
Pause 1000 "Wait 1 =

bo = 0 *Put number 0 (00000000} into bo

Gosub serial "Output the number serially to 74L51e4
Pause 1000 "Wait 1 =

Goto start Do iE again

‘Serial out routine

serial:

pind = bit7 'Bring pin 0 high or low depending upon bit
Pulsout 1, 1 "Bring CLE line high, then low

pin0 = bits 'Same as above

Pulseut 1, 1 ‘Same as above

pind = bits

Pulseut 1, 1
pind = bit4

Pulseout 1, 1
pin0 = bit3

Pulsput 1, 1
pind = bitz

Pulseut 1, 1
pin0 = bitl

Pulseoutr 1, 1
pind = bito

Pulseut 1, 1
Low 1

Return

011

mdine eyep [arreded soys of s Susn srpewayas g aunbig

T :
I
gl
ALl
2% 23y 235 25% HIe or]38d a1
% i o
AP N 1 wﬁ Fa wﬁ 2350
W
A B in ST
N 3t £
P 19 B mlﬂ-uE -]
vV i) L4 I [=Evs
SWU0 [r 5 g1 ovd
113 —T¥y
B0 TN \._:n_umlI _.._ln__._.w_
In m%.:
FEIITOTS
M+ h
FEF

108

Serial Communication and Creating YO Lines 109

Bit Shift Correcting

If you are interfacing to a digital circuit that would be sensitive to the bit shift-
ing, yvou can block the bit shifting by using a second chip, the 7T4LS373 data
octal latch (see Fig. 8.4). The octal latch is placed between the output of the
74L5164 and the LEDs (see the schematic in Fig. 8.5). Remember, in our test-
ing circuit, the LEDs represent our digital circuit. We tie the OC (Output
Enable) pin to ground and use the C (Enable Latch) pin (pin 11 on the
T4LS373) to control the data through the 7T4LS373.

Data are placed on the D inputs (1D, 2D...., 8D). When we want the data to
appear on the Q outputs (1Q, 2Q...., 8Q), we raise the C pin momentarily.

The program inputs the data serially to the T4LS164. The data appear on
the parallel out lines, bit shifting on the inputs of the 74LS373. When the bit
shifting 1s finished and the binary number has settled (eight shifts), we raise
the Enable Latch pin (pin 11) of the 7T4LS373; this lets the parallel data flow
from the input pins to the output pins. Then the Enable Latch pin (pin 11) is
lowered, leaving the parallel data latched in.

As the bits shift, the hit shifting is blocked from the LEDs. Only when the
entire byte has been transmitted do we raise pin 11 (C pin) on the T4LS373,

e

! = vew |2 FUNCTION TABLE
: 14 -\l 10 18 Qutput | Enable
. Enable | Latch | D | Output

" T e L H H H
: o |_ ro [T
s | m N L H L L
¢ g ﬁ gy | 18 L L X Qo
F an m 6o |14 H X X z
3 %0 50 13
s C = Enable Latch

40 En 12
| oo ¢ OC = Output Enable

The eight latches of the
L5373, when C Is high
the Q outputs follow the
D inputs. When € is low
the output wilt be latched
at the curvent data levels.

Figure 8.4 Octal data latch T4L3373 used to nullify bit shifting in cutput.

114 Chapter Eight

Program 8.3

The serial-out and serial-in routines could be merged to conserve program-
ming space and use the same clocking line. Again, to keep the program as
straightforward as possible, this option will not be implemented.

' Serial Interface

Eymbkol TRISE
Eymbol PortE

‘Initialize Portis)

Poke TRISE,4
Low 5
High 4
High 3
sCart:

Gosub serial in
Gosub serial out

Fause 1000
Goto start

'Serial In Routine

serial in:
Pulsout 3,1
Low 4

hit7 = pin2
Pulsout 5,1
bhite = pin2
Pulsout 5,1
hits = pin2
Pulsout 5,1
hitd4 = pin2
Pulsout 5,1
bit3d = pin2
Pulsout 5,1
hit2z = pin2
Pulsout 5,1
hitl = pin2
Pulsout 5,1
bitd = pin2
High 4
Eeturn

'Serial Oukb Routine

serial out:
pind = bit7
Pulsout 1, 1
pind = bits
Pulseut 1, 1
pind = bits
Pulsout 1, 1
pind = bits
Fulsout 1, 1
pind = bit3
Pulseut 1, 1
pind = bit2
Pulsout 1, 1
pind = bitl
Pulsout 1, 1
pind = bitd
Pulseut 1, 1

‘Assign Data Direction Register port B bo 134
‘Assign wvariable PortB to decimal walue of &

‘Set port B Pin2 = input / rest output
*Set CLE low

*Bring CLE inhibit high

‘Bring shift/load high

*Get number from T4LS165
*Send it out on T4L5184
‘Wait o I can see it
‘Do it again

‘Bring shift / load down momentarily
*Bring CLE inhibit low

‘Load kit inte BO

*Bring CLE pin high, then low

‘Same as above

*Bring CLE inhibit high

*Bring pind high or low depending upon bit
*Bring CLK line low, then high

‘Bame as above

*Same as above

Serial Communication and Creating VO Lines 115

Low 1
Eeturn

The schematic shows that the parallel input lines to the 74LS165 are con-
nected to V_ through 10,000-0} resistors. This puts a binary 1 on each input
line. The switches used in this project are eight-position DIP switches. Each
switch connects the bottom of a resistor to ground. When a switch is closed, it
brings that particular pin to ground, or binary 0. By opening and closing the
switches, we can write a binary number on the parallel input. This informa-
tion is automatically retrieved from the 7T4LS165 serially by the PIC micro-
controller.

The PIC microcontroller takes the number retrieved from the 74LS165 and
displays it on the T4LS164. While this project may appear trivial, it is not.
Using this information, you can set up serial communication routines with
other chips and systems. In upcoming chapters, we will use a serial routine to
communicate to a serial analog-to-digital (A/D) converter and use the Basic
Serout command to generate LCD displays.

Parts List
Same as Chap. 1 (and Chap. 8 for programming challenge).

Additional components

7415164 Serial-to-parallel IC
T4L5165 Parallel-to-zserial IC
(8) 10-k{) '/,-W resistors
(1) S-position DIP switch

Available from: Images Company, James Electronics, JDR MicroDevices, and
RadioShack (see Suppliers Index).

118 Chapter Nine

Binary 1

Start Bt

Mark
Parity / Stop Bt

L

Blnaryd s

1 1 0 1 0 1 0 1
Figure 3.1 Standard serial output with start and stop bits.

tion, the LSB (least significant bit) is sent first and the MSB (most significant
bit) is sent last. This is opposite to our previous synchronous serial communi-
cation examples.

A standard 8-bit data package plus 1 stop bit and 1 start bit equals a total
of 10 bits. At 2400 baud (bits per second), 240 bytes are transmitted each sec-
ond. At 9600 baud, a maximum of 960 bytes can be transmitted per second.

The frequency (baud rate) of asynchronous communication must be strict-
ly adhered to. Since there isn't a clock line, the next hit in the sequence
must be on the line for a precise increment of time that is determined by the
baud rate. For instance, at 9600 baud, each bit is on the line for 104 ps
(microseconds).

In order for things to work correctly, the transmitter and receiver frequency
cannot vary from the ideal frequency by more than 5 percent. If their respec-
tive frequencies vary by more than that, during the course of 10 bits being
transmitted and received, they can (but will not always) fall out of sync by
more than a bit (104 ps). This syne error can corrupt the entire byte received.

Many people looking at a variance of 5 percent don't see how this could
cause a problem. Let’s do the math real quick and see how it happens. Let’s
assume that the transmitter is 5 percent faster than the ideal frequency and
the receiver is 5 percent slower than the ideal frequency. For our example, the
ideal frequency 1s 2400 baud, or 416.6 s per bit. The transmitter is transmit-
ting at 2520 baud (2400 plus 5 percent), or 396.8 s per bit. The receiver is
receiving at 2280 baud (2400 minus 5 percent), or 438.5 s per bit. The differ-
ence 18 41.7 ps per bit. Multiply this difference by 10 bits, and the timing is
out by 417 ps. This is just a touch longer than the standard bit length of 416.6
s at 2400 baud. So it becomes clear that if the frequency varies by more than
5 percent, the serial communication can fall out of sync, and be corrupted, by
the time 10 bits have been transmitted and received.

Error Detection Algorithms

Full-featured communication packages may contain algorithms that will help
prevent data corruption if the asynchronous time frame varies. Error detec-
tion algorithms have not vet become part of the PICBasic RS-232 communica-
tion routines.

LCD Alphanumeric Display 119

Parity

The stop bit is used to check each byte transmitted, using a process known as
parity. Parity may be odd, even, or none. The serial transmission consists of a
sequence of binary 1s and 0s. If we choose even parity, the receiver will count
how many binary 1s are transmitted. If the number of 1s transmitted is an
even number, the stop bit will be made a binary 0, keeping the number of bina-
ry 1s even. On the other hand, if an odd number of binary 1s is transmitted,
the stop bit will be made a binary 1 to make the number of 1s even.

If parity is set to even and an odd number of binary 1s is received, this is
known as a parity error and the whole byte of information is thrown out. Parity
errors may be caused by power surges, bad communication lines, or poor inter-
face connections. The problems become more pronounced at faster baud rates.

Serial Formats

The PICBasic compiler has a few standard formats and speeds available. The
available baud rates are 300, 1200, 2400, and 9600. Data are sent as 8 data
bits, no parity, and 1 stop bit. The mode can be inverted. See the Serin and
Serout commands in Chap. 5.

Crystal choice

When 1 first started using the Serin and Serout commands, they would not
work properly. After much hair pulling, I discovered that I had used a 3.57-
MHz crystal instead of a 4.0-MHz erystal on the PIC 16F84. As soon as
changed the crystal to a 4.0-MHz, the Serin and Serout commands worked per-
fectly. Later I tried a 4.0-MHz ceramic resonator for the oscillator, and this
also worked properly.

Three-wire connection

The LCD display requires just three wires to function, +5 V, GND, and a ser-
ial line. The baud rate of the display may be set to either 9600 or 2400 baud.
The serial format is 8 data bits, 1 stop bit, and no parity.

On the back of the LCD display, there is a five-pin header (see Fig. 9.2). The
five-pin header has two extra pins for +5 V and GND. The pins are arranged
in a palindrome layout, so a five-pin header may be connected either way and
still be oriented correctly. Instead of using a five-pin header, I opted for a
three-pin header socket connected to one side of the five-pin header.

Our first program prints out the message “Hello World.” The cursor (print-
ing position) automatically moves from left to right. The schematic is shown in
Fig. 9.3.

" LD Test

Pause 1000

Sercut 1, N2400, (284, 1)

Pause 1

Serout 1, MN2400, (*Hello World!®)
End

120 Chapter Nine

Front View

© UDDDUUUNNUUDNTE S
Apprnximat& size
3 n x 1 .5ll

(e) 0

Back View

/,u— Contrast

- =

. @/ /+5'u'
.. \GHD

HI Serial Data
10 O Bupllcate +5Y and GNO
e
BPS switch connections
down = 2400, up = 9600
Backlight ——

Figure 9.2 Drawing of LCD display, front and back views.

I kept this program small to show how easy it is to get a message out of the
PIC microcontroller. Notice that line 2 of the program [Serout 1,N2400,
(254,1)] is a command. The LCD screen has 13 commands. All commands
must be prefixed with the decimal number 254. The display will treat any
number following the 254 prefix as an instruction. The commands are listed
in Table 9.1.

Positioning the Cursor

The cursor may be positioned anywhere on the LCD screen by using the fol-
lowing command: 254, position number. The position number can be deter-
mined by looking at Fig. 9.4. If we wanted to move the cursor to position 10 of
the second line, we would use the command serour 1, mz200, (252,201)

Serial Line

LCD Alphanumeric Display

121

LCD Disploy

iand
*JY
1 nr <kl
1’1?Kﬂ I-.-El
12 T~ .wF
12 MoLRpE XL
il ; iz
1: osciH ¥
=
: oscai—y
B_lrm/INT
; RAL/TOCKI
1
12
17 PIC 1&F &4

Figure 9.3 Schematic of LCD serial display to PIC 16F84 microcontroller.

TABLE 9.1 Instruction Codes for LCD Display
Code Instruction
1 Clear screen
2 Send cursoer to top left position thome)
g Elank without clearing
12 Make cursor invisible/restore display if blanked
13 Turn on visible blinking cursor
14 Turn on visible underline cursor
15 Mover cursor one character left
20 Mowve cursor one character right
24 Scroll display one character left {all lines}
28 Scroll display one character right (all lines)

Off-Screen Memory

Each line of the LCD display holds 40 characters. Only the first 16 characters
are displayed on the LCD screen. You can use the seroll commands to view the
hidden text.

Fig. 9.5).

This second program illustrates moving the cursor to the second line (see

122 Chapter Nine

Parts List

LCD Display Screen

LGD Cursor Fositions

Character 4 2 a 4 § E 7 B 8 M N 1E 1A 14 1 6
Po lthon

Figure 9.4 LCD display screen and cursor positions.

Figure 8.5 Picture of LCD display message.

' LCD tastc

Fause 1000

Serout 1, MNz400, (254, 1)

Pause 2

Berout 1, MN2400, ("Wherever you go.")
Serout 1, MZ400, (254,152]

Pause 2

Berout 1, MNZ400, ("There you are.")
End

As we move forward, the LCD display will be invaluable for allowing us to
peek inside the chip registers.

Same components as in Chap. 1.

126 Chapter Ten

Scale

Sh_ Pin

Ci
Tl Figure 10.1 Resistive sensor
ipotentiometer) and capacitor connected

to PIC pin.

Scale is determined experimentally. Set the device or transducer to measure
at maximum resistance and read it with Scale set to 255. Under these condi-
tions, the numeric value of Var produced will be an approximate “ideal” value
for Scale.

Ideally, with a capacitor of the proper value and the proper scale, minimum
resistance will output a numeric value close to zero and maximum resistance
will output a numeric output close to 255.

Pin Exceptions

I/O pins that are listed as just TTL may be used with the Pot command. Pins
listed as Schmitt triggers, or ST, do not appear to work with the Pot command.
With the PICBasic compiler and the 16 F84A, we are restricted to using the Pot
command on port B pins only. It just so happens that three of the port B pins
(RBO, RB6, and RBT7) are listed as combination TTL/ST. Pins listed as TTL/ST
on the 16F84A work with the Pot command.

The data sheet states that RB6 and RB7 are Schmitt trigger inputs when
used in serial programming mode. RBO is a Schmitt trigger input when con-
ficured as an external interrupt.

To ensure that the Pot command works with other PICMicros, look at the
particular microcontroller’s data sheet for any potential line problems.

Resistive Sensors

There are many resistive-type transducers that may be read using the Pot com-
mand. The important thing to remember is that the Pot command is not an ana-
log-to-digital (A/D) converter. Converters measure analog voltages, not resistance.

This may at first be confusing, because converters can read a voltage drop
across a resistor, and the drawing or schematic of reading a voltage drop may
be similar in appearance to the Pot diagram; however, the diagrams are not
the same. To determine the difference, the key point to look for is the absence
of a voltage source on top of the resistive component being measured with the
Pot command. A/D converters, on the other hand, will have a voltage or cur-
rent source connected to the top of the resistor or sensor.

Sensors: Resistive, Neural, and Fuzzy Logic 127

POT Command Resistance vs Capacitanco

A0 ufF 047 uF 022 uF

250 /, /

/

|

A1 uF

150 _| /I f/;

fle'!l /
-1/, /
Al

2345 10 15 20 2% 20 35 40 45 5D

Reslstancs in K alhms

Decimal Readout

Figure 10.2 Graph of numeric readout for various capacitors and resistances.

Test Program

Program 10.1

Okay, that's enough explanation; let's work with the command a little. The
first resistive-type sensor we will look at is a flex sensor (see Fig. 10.3).

Flex sensors have numerous applications. For instance, they may be used as
robotic whiskers for bump and wall sensors. They have been used to create vir-
tual reality data gloves, physical measurements, and physics applications.

The program uses the LCD display from Chap. 9 to provide a visual readout.
The numeric readout, with the sensor at its maximum resistance, provides the
proper scale factor to use in the command in order to achieve the greatest range
with this particular sensor. For my test, [plugged the flex sensor into the pro-
totyping breadboard (see Fig. 10.4). The schematic for the project is shown in
Fig. 10.5. Record the numeric readout when the sensor is at its maximum resis-
tance, and use that for a scale factor for best range and accuracy.

‘Find scale farctor and/or read the resistive sensor
start:

128 Chapter Ten

| « 412" - |
+
= =]| RO
ry
r
- 20 thk
Nominal Rasistanca at @ degrass 10,00{ ohms
nl
Approximets force
neaded to deflect end
Physical Dimenslons gu '::'?';E:
Lehgth 4.6" 2
Width 25"
Thick g20"
an
Approximate Raslziance at 30 degress 35,000 shme
Eleatrical Specifications
Mominal Resistance at 0 degraeas 10,000 chms
Appreximate Resistances at 80 degreas 35,000 ohme
Figure 10.3 Specification sheet on flex sensor.
Fob 1,255,B0 ‘Read resistance on pin 1 to
‘determine scale
Serout 0,N2400, {254,1} ‘Clear LCD screen
Serout 0,NZ2400, (#EO] *Zend Pob values oubt on pin 0 serially
Fause 500 ‘Waitc 1/2 =
Gobko start ‘Do it again

If the scale factor displayed by Program 10.1 is 255 (or close to 255), the pro-
gram is already reading the sensor at the best scale (with that particular
capacitor).

We read the LCD display to determine that the program and the sensor are
both working properly. The microcontroller, of course, does not require an LCD
display in order to read the sensor. It can read the numeric value held in the
variable and “interpret” the results.

Fuzzy Logic and Neural Sensors

We are presented with a few interesting possibilities regarding the interpre-
tation of sensor readings. Here we can have the microcontroller mimic the
function of a neural and/or fuzzy logic device.

Sensors: Resistive, Neural, and Fuzzy Logic 129

Figure 10.4 Photograph of flex sensor connected to PIC with LCD display.

Cerial Line

G
+5Y
Ul éf.jﬂin |
f “T-.1uf
] ¥l
M=
it
R
LCD Display
=
b =
Resistive FIC i&6F&84
Senzor
A2
“T-.biF

Figure 10.5 Schematic of flex sensor and LCD display connected to PIC microcontroller.

Sensors: Resistive, Neural, and Fuzzy Logic 137

. L S L EW2 ST L SW2 ', ST Sz
b - : 4 - ' + - -
h e ‘l"'f h\] o "/__ Wt
I_Q'jl‘-ral - .'\'-r.l.lll!r'fl B B) l"‘-.h‘l";
LSWE swd | SW3 SV SW3 LSwd
1 T ! T
10K
AMRy
? vec
. Tl T2
C OF' —
s { Py .
P e H-Bridge
(v) Electrical

COW . - —: schematic
w1 -
13 T4

Figure 10.14 H-bridge function and electrical schematic.

If the shaft rotates in the direction opposite the light source, reverse

either the sensor input pins or the output pins to the H-bridge, but not
both.

Fuzzy Output

The output of our fuzzy light tracker is binary. The motor is either on or off,
rotating clockwise or counterclockwise. In many cases you would want the out-
put to be fuzzy also. For instance, let’s say you're making a fuzzy controller for
elevators. You would want the elevator to start and stop gradually (fuzzy) not
abruptly as in binary (on-off).

Could we change the output of our light tracker and make it fuzzy? Yes.
Instead of simply switching the motor on, we could feed a PWM (pulse-width-
modulation) signal that can vary the motor’s speed.

138 Chapter Ten

Ideally, the motor's speed would be in proportion to the difference (in resis-
tance) of the two CdS cells. A large difference would produce a faster speed
than a small difference. The motor speed would change dynamically (in real
time) as the tracker brings both CdS cells to equal illumination.

This output program may be illustrated using fuzzy logic graphics, groups,
and membership sets.

In this particular application, ereating a fuzzy output for this demonstration
light tracker unit is overkill. If you want to experiment, begin by using the
Pulsout and PWM commands to vary the de motor speed.

Neural sensors (logic)

With a small amount of programming, we can change our fuzzy logic sensors
(CdS photocells) to neural sensors. Neural networks are an expansive topic; we
are limiting ourselves to one small example. For those who want to pursue
further study into neural networks, I recommend a book I've written entitled
Understanding Neural Networks (ISBN #0-7906-1115-5).

To ereate neural sensors, we will take the numeric resistive reading from
each sensor, multiply it by a weight factor, and then sum the results. The
results are then compared to a tri-level threshold value (see Fig. 10.15).

Thus, our small program and sensors are performing all the functions
expected in a neural network. We may even be pioneering a neural first, by
applying a multivalue threshold scheme. Are multivalue thresholds natural
or mimicked in nature (biological systems)? The answer is ves. For instance,
an itch is a extremely low level of pain. The sensation of burning is actually
the combination of sensing ice cold with warm (ooh).

Multivalue threshold

Typically in neural networks, individual neurons have a singular threshold
(positive or negative) that, once exceeded, activates the output of the neuron.
In our example, the output is compared to multiple values, with the output
going to the best fit.

Instead of thinking of the output as numeric values, think of each numeric
range as a shape instead; a circle, square, and triangle will suffice. When the neu-
ron is summed, it outputs a shape block (instead of a number). The receptor neu-
rons (LEDs) have a shaped receiver unit that can fit in a shape block. When a
shape block matches the receiver unit, the neuron becomes active (LED turns on).

In our case, each output neuron relates to a particular behavior: sleeping,
hunting, and feeding—behaviors essential for survival in a photovore-style
robot. Each output shape represents the current light level.

Low light level: The photovore stops hunting and searching for food (light).
It enters a sleep or hibernation mode.

Medium light level: The photovore hunts and searches for the brightest
light areas.

Sensors: Resistive, Neural, and Fuzzy Logic 139

O @
s Cutput
I ensor Neuron A
nput A
w1
Sum

Quiput
Meuron B

QOutput

_l'tlau ron &
\ Simple Heuran W

Figure 10.15 Simple neural sensor.

High light level: The photovore stops and feeds via solar cells to recharge its
batteries.

Instead of building a photovore robet, we will use an LED to distinguish
among the behavior states (see schematic in Fig. 10.16). You can label the
LEDs sleeping, hunting, and feeding. Which LED will become active will
depend upon the light level received by the CdS cells. The finished project is
shown in Fig. 10.17.

Program 10.3
'Heural demo
‘Set up
Low a4 ‘LED 0 off: "Sleep”
Low 1 ‘LED 1 off: ™Hunt®
Low 2 'LED 2 pff: "Feed®
Ecart:
Pot 3,255,b0 ‘Read first sensor
Pot 4,255,b1 ‘Read second sensor

WZ = b0 * 3 ‘Apply weight

140 Chapter Ten

SV O [o
1 a1 123]
i YK _L_:SL :
HewRpY X
sl
Cos Cds Jﬁ_g‘}
PhotocelL Fhotocell oscaHE—
-‘:;:.I / ‘::l, (/ B0/ INT |
|,| | i A TOCKT =
F,
Sensor2 - Seasor 1 PIC 16F84
Vas
- g
= peuf

Figure 10.16 Neural microcontroller circuit.

y

SRE:
d ..

Figure 10.17 Photograph of neural mierocontroller cireuit.

W3 b1 = 2

wd wd + W3

‘Apply thresholds

If wd =« 40 Then feed

If wd == 300 Then hunt
If wa = 300 Then snooze
‘Retions

‘Apply welght
‘*Sum results

‘Locs of light; feed
*Medium light; hunt
*Little light; sleap

Sensors: Resistive, Neural, and Fuzzy Logic 141

fopd: *Feeding
Low O

Low 1

High 2

Goto start

hunt : ‘Hunt ing
Low O

High 1

Low 2

GCoto start

ENOOEE : ‘Fleeping. DON'T USE KEYWORD SLEEF
High 0O

Low 1

Low 2

Coto start

Parts List

Components outlined in Chap. 1.

Additional components

(2) CdS photocells

(1) Flex sensor

(2) 0.022-pF capacitors

(1) 0.01-pF capacitor

(4) TIP120 NPN Darlington transistors
(2) 10-k{} resistors

(6) 1N514 diodes

(2) 1-kf(} resistors

(1) Gearbox motor

Available from: Images Company, James Electronics, JDR MicroDevices, and
RadioShack (see Suppliers Index).

o
5 +
4

L

|
a
w

]

3
C
=

5
§

|'ﬁ|'n|| T =

off
]
+
==
-, off
off 5] _ off
i 2 Y] [i
NI
s}
n;_ o
4

W =]

+ [N

en [
"S':
[N]

e B e v e

El
:_:I
(T off
B

Figure 12,1 Stepper motor going through one rotation.

M

Stepper Motor Control 151

off

Stepper Motor Control 155

The diode placed across each transistor protects the transistor from the indue-
tive surge created when current is switched on and off in the stepper motor coils.
The diode provides a safe return path for the reverse current. Without the
diodes, the transistor will be more prone to failure and/or shorter life.

Stepper motors

Figure 12.5 is an electric equivalent circuit of the stepper motor we are using.
The stepper motor has six wires coming out from the casing. We can see by fol-
lowing the lines that three leads go to each half of the coil windings, and that
the coil windings are connected in pairs. This is how unipolar four-phase step-
per motors are wired.

So, let’s assume that you just picked this stepper motor and didn’t know any-
thing about it. The simplest way to analyze it is to check the electrical resis-
tance between the leads. By making a table of the resistances measured
between the leads, vou'll quickly find which wires are connected to which coils.

Figure 12.6 shows how the resistance of the motor we are using looks. There
is a 13-0) resistance between the center-tap wire and each end lead, and 26 ()
between the two end leads. The resistance reading from wires originating from
separate coils will be infinitely high (no connection). For instance, this would
be the case for the resistance between the blue and brown leads.

Armed with this information, you can decipher just about any six-wire step-
per motor vou come across and wire it properly into a circuit. The stepper
motor we are using rotates 1.8° per step.

Yellow —
White *
Brown

i
7N & == CrTh
;

Blue
Blaick L
Red

Figure 12.5 Electrical equivalent of stepper motor.

158 Chapter Twelve

Poke portE,B ‘Step 1

Pause ti ‘Dalay

Poke porthl,4 ‘Step 2

Pause ti ‘Dealay

Poke portE, 2 ‘Step 3

Pause ti ‘Dalay

Poke porti,1 ‘Step 4

Pause ti ‘Delay

Goto check ‘Jump to check switch status
check ‘Switch status

Peek portd, BO

‘Peek the switches

If hitd = 0 Then leoopl *If 5W1 is closed, increase ti
If hirl = 0 Then loop2 *If 5W2 is closed, decrease ri
If bitZ = 0 Then hold3 ‘Stop motor

If hit3 = 0 Then start ‘Go forward

Goto starcz ‘Go reverse

loopl: ‘Increase delay

Poke portE,0 *Turn off transistors

i = E1 + 5§ ‘Increase delay by 5 ms

Pause 50 ‘Dalay

If £i » 250 Then holdl ‘Limit delay to 250 ms

Feelk portd,bd ‘Check switch status

If bitd = 0 Then loopl *5£ill inereasing delay?

Goto check
loop2 :

Foke portB,0
ki = 1 - 5

‘If not, jump to main switch status check

‘Decreasze delay
*Turn off transistors
‘Decrease delay by 5 ms

Pause 50

If i = 20 Then holdz
Peek porti, bl

If bitl = 0 Then loop2
Gots check

‘Pause

‘Limit delay to 20 ms

‘Check switch status

*5till decreasing delay?

‘If not, jump te main switeh status check

holdl: ‘Limit upper delay
ti = Z45 ‘To 245 ms

Cotoe loopl ‘Go back

holdz: ‘Limit lower delay
Li = 25 ‘To 25 ms

goto loopZ ‘Go back

holds: ‘Stop stepper motor

‘Turn off transistor

‘Check switches

‘Keep moter off?

‘If not, jump to main switch status check

Poke portB, 0

Feek porth, bo

If bhit2 = 0 Then held3
Coto check

The schematic for this program 1s shown in Fig. 12.7. In the photograph of
the circuit (see Fig. 12.8), the four switches are difficult to make out. They are
the four bare wire strips behind the PIC microcontroller. The top sides of the
bare wire strips are connected to +5 V through 10-k{} resistors. A wire from
each switch is connected to the appropriate pin on port A. A single wire is con-
nected to ground and is used to close any of the switches by touching the bare
wire strip.

Half-Stepping

Half-stepping the motor effectively doubles the resolution. In this instance, it
will require 400 pulses to complete one rotation. Table 12.2 shows the switch-

e
AL

chas

i

“nadats aojom addays jo oryewayag 2z e4nbig

3 =
ASLALI mm

ﬂ-_
% i
G—
.;}_

ﬂ_umz__

hMS g
= £
£ 9 .m_ m_
" ha Ty 1y
AS+ | ACH A5+
puINETTTS] O NEETIALE
— —— _
Tk e =
A01.0H 79T AL 06081
“#ddays RISNT 20 A TS P
an|g WL QN oy 5EA
1 il +e337 Jld
q D808 lEvd
] BT ALY gl S
HISNT 16 A G = EETRL
oS ANL/08d 2
7 wwm %
o TITUPgpprii=
=k T
I i .”_m_u_@lﬁu.:_T
1 edd L 4nte
HE R e =1
ejead
gl Tl
fiG+

159

FORE WO 2} Bursn onpewayss aojow addays gLzl aanbig

daig 1na O
.EEO.\Ol_ 3 py Ll
ok 3 /1
wndug derg] :
QLT " —R—
1IN R =
O H e [F o807 *]
H_ _ M_ -
51 30 g Lz v 1
% —11 1] -
P ! ' = = O
AS = a2 294
¢ e N
TR A 3 ey
-I.:! F AMRAEHN " = m
S g B U !
- - —
- 5L LTI R W - A0}0 Jeddas
" HONMLIED m Ll _
T e L " S = MLy
W | A
= AS

163

164 Chapter Twelve

l#l'i FEB AR RS N 5w tll14 EaEEE Bvman mmEs= ﬁl

ilil.‘i.
EE R L R R R TR
ERE TR R RN
L T T TR L

LA R L RN R
e e
BaE e ...
AT

mEmE W EE =

Figure 1211 Photograph of stepper motor circuit with the TUCN 5804,

Pins 10 and 14 on the UCN 5804 are controlled by switches that bring the
pins to a logic high or low. Pin 10 controls whether the output to the step-
per motor will be full-step or half-step, and pin 14 controls direction. If we
want, these options may also be put under the control of the PIC. The pins
are brought to logic high and low to activate the options in the same way as
the Output Enable pin was activated.

The following is a PICBasic program that uses a dedicated stepper motor IC.

'Stepper mobor w/ UCH 5804

Symbol TRISE = 134 ‘*Initialize TRISE tao 134

Symbol FortBE = & *Initialize variable PortB to &
Poke THRISE,D ‘Sef PortE lines output

Lowl ‘Bring Output Enable low to run
skbart:

Pulzout 0, 10000 *Send 10-ms pulse to UCH 5804
Goto start ‘Do it again

In this case, I again wrote a simple core program to show how easily you
can get the stepper motor running. You can, of course, add options to the pro-
gram to change the pulse frequency, connect the direction and step mode
pins, ete.

168 Chapter Thirteen

Figure 13.1 Picture of hobby 4- to 6-8V (42-0z torque) servomotors.

100 = 10 ps = 1000 ps or 1 ms. If we look back at our servo specifications, we
see that a 1-ms pulse rotates the servo’s arm to its leftmost position.

The program continues to smoothly increment the B3 variable, sweeping the
servomotor’s arm to its rightmost position at B3 = 200 (2 ms). At this point,
the process reverses, and B3 begins to decrement back to 100.

This sweeping back and forth continues for as long as the program is run.

'Servo mobLor program
"Sweep left to right like a radar antenna

b3 = 100 "Initialize at left position
Sweep:

Pulsout 0,b3 'sSend signal to servomobtor
Pause 18 "Transmit signal 50-60 Hz

b3l = b3 + 1 "Increment servo pulse width
If b3 » 200 Then sweepback "End of forward saweep?

Goto sweep ‘Keep sweeping

aweepback:

b3 = b3y - 1 'Decrement servo pulse width
Pulsout 4, b3 'Send pulse to servomotor
Pause 18 ‘Send it 50-80 Hz

If b3 = 100 Then sweep "End of sweepback?

Goto sweepback "Heep going back

Servomotor Control 169

Pulze Width 1-2 ms

Period 18 ms
- 1 mx Fulse Train
({- ' Servoe Maotor Position
| . S leh

Snnvo Motor Fositlon
| . 4 Mirange

e ',r"\ 1.5 me Fulse Traln
| I

.f"i -‘\I Zms Fulse Traln
k\ =+ Servo Makor Posifion
|_ - Right

Figure 13.2 Pulse-width train delivered to servomotor. Relationship of pulse width to servomotor
armature position.

+9Yy O

It uL <FI
]—' RB? -'__--lllr
Eres McLRpt x1
! -es N Mz
A e asc1 b
P FB3 1 = .
¥ e asc? T
e
2 PR AINT
3—E'ﬁ-efTDE|([
l—ﬁ'l]
—Raz
Y
2 loag FIC 1&F34
V55
4

Figure 13.3 Schematic of bazic servomotor sweeper controller (antomatic).

Extending Servomotor Range

A pulse-width variance from 1 to 2 ms will provide a full 90° of rotation. To
extend this range up to 180°, you need to use pulses smaller than 1 ms and
greater than 2 ms.

If you decide to extend the rotational movement from your servo, you should
be aware of certain problems that may arise. In particular, the servomotor has

170 Chapter Thirteen

)]
+5U('

_C1
= wr

45Urj

Rz 3
loKo LbEq

P
R

SPOT S :
Center OfF (17 i PIC 16F &4

SwiTch Sw §|
.}

Figure 13.5 Schematic of manual control 2ervomotor.

end stops that limit how far the shaft can rotate in either direction. If the PIC
is sending a signal to the servomotor that is past either end stop, the motor will
continue to fight against the end stop. In this stalled condition, the servomotor
will draw increased current and generate greater wear on the gearing inside
the motor, neither of which is desirable.

There is a within-group variance among servomotors from the same manu-
facturer as well as a variance among servomotor manufacturers. So while one

Servomotor Contral 171

servo may need a 2.8-ms pulse for a full rotation extension, another may
require only a 2.4-ms pulse width.

When you decide to go out of the prescribed range of acceptable pulse widths
(1 to 2 ms) for servomotors, you should check the individual servomotor to
ensure that you are not stalling.

Manual Servo Control

This next project allows you to control the servomotor via a few switches. The
schematic is shown in Fig. 13.5. The switch used is a single-pole, double-throw
(SPDT) with a center off position. The center off position is essential. If there
is not a center off position, you will need to use two switches instead of one.

The operation of this switch is simple. To activate the servo, move the switch
in the upward direction. The servo will begin to rotate in one direction. To stop
the motor, move the switch to the center off position. To rotate the servo in the
opposite direction, push the switch lever down. Stop the servo as before, by
placing the switch in the center off position. The complete project is shown in
Fig. 13.6.

"Manual serveo controller
Symbol porta = 5

b3l = 150 *Initialize servo at center position
start:

Peak porta,bi ‘Look at switches on port A

If hitd = 0 Then sweepl *Is 8W1l pressed?

If bitl = 0 Then sweeapr "Iz BW2 pressed?

Pulsout 0,b3 *Hold szervo in current position
Pause 18 *Send signal 50-60 Hz

Goto start *Check switcehes again

sweapl: *EW1l is pressed

bl = b3 + 1 ‘Increment serwvo pulse width
Pulseut 0,b3 *Send szignal te servo mobtor

Figure 13.6 Picture of manual control servomotor.

Servomotor Control

+5v &

R+
(LIl

173

3
,l[l ke

+3V~

K2 k3
e LCK

. s TCC
w2

i L
oy ke L0l

WoLR P —

tHHz

50 Iy
nﬁtau}

FIC 15F 24

oWl
)

- LuF

Figure 13.7 Schematic of multiple servomotor controller imanual).

Goto startc

'Second servomnobor routine
sweapll:

b4 = b4 + 1

Pulsout 1,b4

Pulzeut 4, b3

Pause 18

If b4 > 200 Then hold3
Goto start

SwWeeprl:

b4 = k4 - 1

Pulzeout 1, b4

Pulsout 0, b3

Pause 18

If B4 = 100 Then hold4
Goto startc

holds:

b4 = 200

Goto startc

holds -

b4 = 100

Goto startc

EW3 iz pressed
‘Increment servo pulse
‘Send signal to Servo
‘Hold serve 1 position
‘Transmit signal 50-g0
‘Maximum sweepl value?
‘Keep sweesping

‘EW4 iz pressed
‘Decrement servo pulse
*Send pulse to servo 2
*Hold serve 1 position
*Send it 50-60 Hz
‘Minimum sweepr value?
‘Keep going back

*Hold maximum value to

‘Hold minimum value to

The completed project is shown in Fig. 13.8.

Timing and Servomotors

Parts List

width
2 motor

Hz

width
Mot o

200

100

As you experiment with servomotors, it is necessary to feed the pulse signal to
the servomotor 50 to 60 times per second. It is important to keep this in mind
when running multiple servomotors or other time-critical applications.

Same components as in Chap. 1.

176 Chapter Fourteen

A/D Converters

There are a number of PIC microcontrollers with built-in A/D converters. Since
we have done all our work with the PIC 16F84, I will continue to work with
this chip by connecting an external A/D converter.

My next book, on PIC microcontrollers, will deal with more advanced PIC
microcontrollers with built-in A/D converters.

To minimize the number of I/O lines needed, we will use a serial A/D con-
verter. The TLC 548 is shown in Fig. 14.2. This serial A/D chip will require just
three lines off our PIC microcontroller. The specifications on this A/D convert-
er are as follows:

CMOS technology
8-hit resolution

Reference input voltages (+)

——

Digital
Equivalent

Voltage
1]

| | I
Clock Cycles —

Figure 14.1 Plot of analog signal and digital equivalent.

Analog-to-Digital (A/D) Converters 177

Conversion time, 17 ps max

40,000 samples per second (approx.)
Built-in sample and hold

Wide power supply range, 3to 6 V
4-MHz internal clock

Low power consumption, 6§ mW (typical)

This chip is easily interfaced to our microcontroller.

Setting the Reference Voltage

Looking at the pinout of the integrated circuit shown in Fig. 14.2, we can see
that there are two pins for setting the reference voltages, REF+ (pin 1) and
REF - (pin 3). The voltages placed between these two pins become the range
of voltages the analog-to-digital converter will read and convert to a digital
equivalent.

The voltage difference between these two reference (REF) pins must be at
least 1 V. REF+ should not be greater than the + power supply to the chip
(V). Consequently, REF - should not be less than the GND supply to the chip.

If desired, the REF + pin can be tied to V_and the REF~ pin can be tied to
GND. This will allow the chip to read Vultdgeb between GND and V .

Voltage Range and Resolution
Assuming a V_of +5 V, with REF 4 tied to Vv and REF - tied to ground, what

is the resolution of our converter chip? We take our voltage range {rom REF
to REF+, in this case 5 V, and divide by our 8-bit resolution (or 256), which
equals 5 V/256 = 0.019 V.

Looking back at Fig. 14.1, we could visualize each upward voltage increment
(tick mark on vertical axis) as equaling 0.019 V.

Suppose the sensor or unit from which we need to read a voltage varies by
only 2 V, say from 1 to 3 V. If we wanted to increase the resolution of our A/D

Top View

e
1
")

Ref+|
Analog In[_|
Ref -| |
GND [

| Vee

| 110 Clock
| Data Out
| CS

Bl N —
8¥S D111

Figure 14.2 Finout of the TLC 548,

178 Chapter Fourteen

converter, we could set REF—- to 1 V and REF+ to 3 V. Now what is the reso-
lution of our A/D converter? It's calculated just as before. We take the voltage
range from REF~- to REF+, in this case 2 V, and divide by 256 (8-hit resolu-
tion). So 2/256 = 0.0078 V.

Interpreting the Results

Suppose the PIC microcontroller is reading the number 100 from the serial
A/D converter. What does this number represent? Let's go back to our first
case, where V' _is 5 V, the voltage range is 5 V, REF + is tied to V , and REF -~
is tied to grmfﬁd Our resolution is 0.019 V. So reading 100 from the A/D chip
means that it is reading a voltage of 100 = 0.019V, or 1.9 V.

In the second case, where REF~ is at 1V, REF+ is a +3 V, range equals 2
V, and step resolution equals 0.0078 V. Here reading the number 100 from the
serial A/D converter is equal to a voltage of 1.78 V [(100 x 0.0078 V = 0.78 V);
0.78 V plus REF - (1 V) = 1.78 V|.

Serial Chip Control

Now that the basic calculations are finished, it's time to actually implement
the chip. We need three I/O lines to use the serial A/D chip. The CS pin is a
Chip Select; the small line or bar above the CS nomenclature tells us that the
pin is active negative. Thus, when the CS pin is brought low, the chip is select-
ed. A clock signal is sent to the chip’s 'O clock pin. We read the serial data
from the data out pin.

We will have to create our own serial routine as before, since the RS-232
communication protocol will foul the chip with its stop and start bits. But we
will use the R5-232 routine to display the information from our A/D onto our
LCD display.

Serial Chip Sequence

This sequence shows how the serial A/D chip can be accessed easily.

1. Bring the CS pin low. This immediately places the most significant bit
(MSE) on the data out pin.

2. The falling edges of the first four I'O clock cycles shift out the second, third,
fourth, and fifth most significant bits. At this point, the on-chip sample and
hold begin sampling the analog input.

3. Three more 1/O clock cyeles bring out the sixth, seventh, and eighth con-
version bits on the falling edges.
4. Bring CS high and the I/O clock line low.

The first schematic is shown in Fig. 14.3. We are using a 5- or 10-k{} poten-
tiometer. By moving the wiper back and forth, you can see how the number on
the LCD changes. You can calculate the voltage the number represents by mul-
tiplving the number on the display by 0.019 V.

"Serial A/D converter program

Low 1
start:
Gosub serial
' LD roubine

in

‘Bring I/0 clock low

Analog-to-Digital (A/D) Converters

Serout 31, N2400, (254, 1)

FPause 1

Serout 3, N2400, (#b0)

Pause 100 ‘Lat me see display

Goto startc

'Serial in routine

serial _in:
Low 2
bit7 = pind

‘Bring CS down low
‘Lead bic 7 inte BO

Pulsgoutr 1,1 ‘Bring CLE pin high, then low
bite = pind ‘Lead bic 6 into BO

Pulseut 1,1 ‘Bring CLE pin high, then low
hits = pind ‘Load bit 5 inteo BO

Fulsout 1,1 ‘Bring CLE pin high, then low
bit4 = pind ‘Lead bit 4 into BO

Pulgoutr 1,1 ‘Bring CLE pin high, then low
bit3d = pind ‘Lead bic 3 into BO

Pulsocut 1,1 ‘Bring CLE pin high, then low
bitZ = pind ‘Leoad kit 2 ointo BO

Pulsout 1,1 ‘Bring CLE pin high, then low
bitl = pind ‘Lead kit 1 into BO

Pulgeout 1,1 ‘Bring CLE pin high, then low
bitd = pind ‘Load kit 0 into BO

Pulsocut 1,1

High = ‘Bring CS high

Eeturn

179

Toxic Gas Sensor

A toxic gas sensor responds to a large number of airborne compounds (see Fig.
14.4). It is a resistive device; when it detects airborne compounds, its resistance

serial vee
Line s Yoo 1 yL <Rl
+94 ﬂ} LK 1.1
e T
1 ¥l
1p 1% iHHz
1% QsCi——+¢+
(]
LCD Di 2R ? g oscefE—-
|5pl oy o b 5 RB0/INT
L pavsTooa
TLCSug (s
14 AR
Al
2 b FIC 15F 8%
Grnd | V5SS
= L 5

Figure 14.3 Test circuit nusing a 10-k{} potentiometer.

180 Chapter Fourteen

Parts List

decreases. Figure 14.5 is a schematic of the toxic gas sensor project. Pins 2 and 5
on the gas sensor are connected to an internal heater coil. The heater draws 115
mA at 5 V. Pins 4 and 6 are connected together internally, as are pins 1 and 3.
You can solder wires to the sensor directly or purchase a round six-pin socket.

Polarity isn't important to the heater coil or resistive element. You may
notice that as the sensor is operating, it will feel quite warm. Don't be
alarmed; this is normal.

Since the sensor has been in storage prior to your receiving it, it will require
an initial 2-min warm-up period when it is first turned on. The length of the
warm-up period will decrease with repeated use. After the warm-up period,
yvou can test the sensor with a number of household items.

For the first test, breathe on the sensor. The numbers on the LCD display
should go up as it detects the carbon dioxide in your breath. For another test,
release gas from a butane lighter. The sensor should react immediately to the
butane gas.

Figure 14.6 is a photograph of the complete project.

In the next chapter, we will use this circuit to make a toxic gas alarm and
automatic ventilator control.

Same components as in Chap. 1.

Additional components

TLC548 Serial AD $8.95
Toxic gas sensor $32.00
6-pin socket $1.50

Available from: Images Company (see Suppliers Index).

1 2 3 4 s

; MM

Figure 14.4 Photograph of the toxic gas sensor.

Analog-to-Digital (A/D) Converters 181

(7 wee
Serial
R
Larre Ve L e Lt
= laf
w1
" M2
= :3—4!
o I ol
?
[
TLES4E
FIC 16F =4
Tasie Cas Tensse

- L]
573
flo B3 | botton view |
fe__ 2
§ 6

Fis 2 & 5 Feater
Ping 1 B I intaradlly Sonrfected
Pine % & & internol .y conrected

Figure 14.5 Schematic using toxic gas sensor.

VIV FIYrFr rm

Figure 14.6 FPhotograph of toxic gas sensor circuit.

184 Chapter Fifteen

a photosensitive internal triac (pins 6 and 4), which in turn will trigger an
external triac that powers the load.

Circuit Construction

To build these circuits, you cannot safely use the solderless breadboard. The volt-
ages and currents are greater than can be safely handled on the breadboard.

Please be careful. I don’t want people accidentally shocking or electrocuting
themselves. Always be extra careful when building any circuit that uses
household electric power. The power available from vour household electric
wiring is more than enough to reduce vour circuit to a cinder or to give vou a
nasty shock or worse.

Figure 15.2 shows a resistive-type ac appliance circuit fragment (minus the
PIC controller). An inductive appliance controller is shown in Figure 15.3 (again
minus the PIC microcontroller). The resistor R, (in each schematic) is your main
load or appliance that is being powered. The triac chosen will determine the max-
imum power (in watts) that may be safely controlled. The power rating on the tri-
ac | used (see Parts List) is 6 A at 200 V, more than enough for a 50-W fan.

1 advise constructing the inductive-type circuit, since it can be used for both
resistive and inductive types of appliances. This will eliminate any potential
gquestions later on, such as, Is this a resistive or an inductive control circuit?

MOC3010

A
p_ ¥ BT S

% y Figure 151 MOC3010 pinout.

Resistive Load

RL
WL WL
R1
+ro 1B -
L sy —|
TNGOTT
1, s
G £ TR Rﬁ) WACEN10

Figure 15.2 Resistive ac appliance circuit fragment.

Controlling AC Appliances 185

Inductive Load BL
[e
P e
A tale Jek, —

EMEDFD
n U1 t]ﬁ o1 LB
Z BE)HD[]I]ID L2RF

)
’TEL

(E
L

Figure 15.3 Inductive ac appliance circuit fragment.

The schematic fragment for resistive loads can be used for comparison with
the inductive circuit or, if you wish, as a dedicated resistive load controller.

Since 1 believe that most readers will be interested in controlling ac appli-
ances or devices in their home, Fig. 15.4 is the circuit we will build. All the
components must be soldered to a printed circuit board. Make sure that any
lines and wiring carrying the household power are adequately insulated and
covered.

The triac I used is rated at 200 V at 6 A, which means that it is capable of
handling 1200 W. In order to pass that much current, the triac would require
an adequate heat sink. I advise you to keep the maximum power under 250 W.

'Serial A/D converter and toxic gas program

Low 1 ‘Bring I/0 clock low
start:

Gosub serial in

' LCD routine

Sercout 3, MN2400, (254, 1)

Pauge 1

Berout 3, N2400, (#b0)

Pause 100 ‘Let me see display
If B0 > 190 Then fanl ‘Turn fan on

If b0 = 191 Then fanz *Turn fan off

Goto start
'Serial in routine
serial _in:

Low 2 ‘Bring C5 down low
bit7 = pind ‘Load bit 7 into BO
Pulsoutr 1,1 ‘Bring CLE pin high, then low
bite = pind ‘Load bit & inte BO
Pulseout 1,1 ‘Bring CLE pin high, then low
Bit5 = pind ‘Load bit 5 into BO
Pulsout 1,1 ‘Bring CLE pin high, then low
bit4 = pind ‘Load bit 4 into BO
Pulseut 1,1 ‘Bring CLE pin high, then low
bit3 = pind ‘Load bit 3 inte BO
Pulseut 1,1 ‘Bring CLE pin high, then low
bitZ = pind ‘Load bit 2 into BO

Pulsout 1,1 ‘Bring CLE pin high, then low

188 Chapter Fifteen

Smart Control

I would like to make a point regarding smart controls: They need feedback to
determine if a particular action is being performed. To make this point, I wish
to draw an analogy.

Let’s say that you've just returned from a newspaper stand with vour favorite
magazine. You sit in a chair and reach over to turn on the lamp to read by, but
there is no light. “Darn,” you say to vourself. You look down to the socket to see
if the lamp is plugged in. It is. You look over to the clock on the wall that’s on
the same fuse as the lamp. The clock is ticking away, so you know you have
juice going to the lamp. You flick the lamp switch a couple of times, to make
sure the switch isn't stuck. Now you take the lampshade off the lamp, and, sure
enough, a black spot on the bulb lets you know that it’s burned out. You replace
the bulb, the lamp works fine, and vou finally get to read the magazine.

Now, there’s nothing remarkable about this incident. But it is a good exam-
ple of a smart control. When the lamp was turned on, the person knew that
the light wasn't lit and went through various steps to locate and correct the
problem. But what about a microcontroller? Had it been the microcontroller’s
job to turn on the lamp, it would not have known whether the light was on.

To build a smart control, we must give the microcontroller feedback so that
it can check to see if the action was successful. For the light example, we might
use a photocell or photoresistor for a feedback signal. If the feedback gave a
negative response, the microcontroller could ring an alarm or send a signal.

Keep this information in mind so that if someday you find that you have
a need for a smart controller somewhere, your PIC chip can handle it.

Electronic Noses

Parts List

The toxic gas sensor is the forerunner of the electronic nose. High-quality,
highly selective electronic noses have numerous applications in many indus-
tries—food spoilage, perfume, medicine, and law enforcement, to name a few.

The toxic gas sensors are not digital sensors, they are analog. If there is suf-
ficient within-group variance in the response to compounds, a group of sensors
can be wired into a neural network for detection of specific odors.

Same components as in Chaps. 1, 9, and 14.

Additional components

MOC3010 optocouple triac RadioShack PN# 276-134

2N6070 triac (or equivalent) RadioShack PN# 276-1000
0.22-uF capacitor RadioShack PN# 272-1070
Line cord RadioShack PN# 278-1255

